
Persistent Coarrays: Integrating MPI Storage Windows in
Coarray Fortran

Sergio Rivas-Gomez
sergiorg@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Alessandro Fanfarillo
elfanfa@ucar.edu

National Center for Atmospheric Research
Boulder, CO, United States

Sai Narasimhamurthy
sai.narasimhamurthy@seagate.com

Seagate Systems UK
Havant, United Kingdom

Stefano Markidis
markidis@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
The inherent integration of novel hardware and software compo-
nents on HPC is expected to considerably aggravate the Mean Time
Between Failures (MTBF) on scientific applications, while simulta-
neously increase the programming complexity of these clusters. In
this work, we present the initial steps towards the integration of
transparent resilience support inside Coarray Fortran. In particular,
we propose persistent coarrays, an extension of OpenCoarrays that
integrates MPI storage windows to leverage its transport layer and
seamlessly map coarrays to files on storage. Preliminary results
indicate that our approach provides clear benefits on representative
workloads, while incurring in minimal source code changes.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; Distributed programming languages.

KEYWORDS
Persistent Coarrays, Coarray Fortran, MPI Storage Windows

ACM Reference Format:
Sergio Rivas-Gomez, Alessandro Fanfarillo, Sai Narasimhamurthy, and Ste-
fano Markidis. 2019. Persistent Coarrays: Integrating MPI Storage Windows
in Coarray Fortran. In 26th European MPI Users’ Group Meeting (EuroMPI
2019), September 11–13, 2019, Zürich, Switzerland. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3343211.3343214

1 INTRODUCTION
With the emergence of deep learning and data-centric workloads
on HPC, drastic hardware and software changes are expected to
be featured on upcoming major supercomputers [13, 25]. These
changes mostly aim to address the recent demands of the scientific
community. For instance, novel CPU architectures are likely to
integrate data formats that use tensors with a shared exponent [6,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7175-9/19/09. . . $15.00
https://doi.org/10.1145/3343211.3343214

21], maximizing the dynamic range of the 16-bit floating point data
format for training and inference on convolutional neural networks.

While these technological breakthroughs can provide multiple
advantages in terms of performance and power consumption (e.g.,
5–10× using just twice the power of current large-scale HPC clus-
ters [33]), it has also been largely debated that the presence of
billions of hardware components and several levels of software
stack will also represent an increment in number of hardware and
software failures [4, 12, 28]. In addition, the increase in concurrency,
estimated between 100–1000× in comparison [8], will further ag-
gravate this problem.

To overcome some of these limitations, recent supercomputers
feature a variety of Non-Volatile RAM (NVRAM) memories with
different performance characteristics, next to conventional hard
disks and DRAM [24, 27] (Figure 1). Compared to traditional parallel
file systems, the cost of accessing these memory tiers can provide
tremendous opportunities for fault-tolerance [19]. Nonetheless,
allocating and moving data in such systems often require the use of
different programming interfaces to program separately memory
and storage. Hence, the inherent heterogeneity poses additional
constraints due to the programming complexity, making it difficult
for scientific applications to take advantage of these developments.

In this work, we set the initial steps towards the integration of
transparent resilience support inside Coarray Fortran (CAF). In
particular, we present the concept of persistent coarrays, a mecha-
nism that provides implicit storage support with barely minimal
source code changes. By extending the transport layer implemen-
tation of OpenCoarrays [11], we take advantage of MPI storage
windows [31] to map coarrays to files and enable direct access to a
diverse range of memory and storage technologies. Furthermore,
persistent coarrays represents a vital contribution to the recov-
ery mechanism of failed images [12], opening the opportunity
for seamless fault-tolerance in the near-term future. Initial perfor-
mance results indicate that the penalty of persistent coarrays is
negligible when performing remote memory operations compared
to non-resilient implementations. Moreover, we also illustrate that
local storage can improve approximately up to 2× the performance
obtained with traditional parallel file systems.

The contributions of this work are the following:
• We present the concept of persistent coarrays to provide
transparent resilience support in Coarray Fortran.

• We integrate the concept of MPI storage windows [31] inside
OpenCoarrays to extend its MPI-based transport layer.

https://doi.org/10.1145/3343211.3343214
https://doi.org/10.1145/3343211.3343214

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Sergio Rivas-Gomez et al.

• We evaluate and compare the performance of our imple-
mentation under representative workloads, and compare the
results with non-resilient implementations.

• We provide further insight into how this approach could
be integrated into future revisions of the Coarray Fortran
standard, including three potential API alternatives.

The paper is organized as follows. We provide an overview of
Coarray Fortran and present the design and implementation details
of persistent coarrays based on MPI storage windows in Section 2.
The experimental setup and performance results of the EPCC CAF
Microbenchmark suite [18] and Intel’s Parallel Research Kernels
(PRK) [35] are presented in Section 3. We extend the discussion
of the results and provide further insights in Section 4. Related
work is described in Section 5. Lastly, Section 6 summarizes our
conclusions and outlines future work on this topic.

2 PERSISTENT COARRAYS
Coarray Fortran (CAF) originated as a syntactic extension of Fortran
95, which eventually became part of the Fortran 2008 standard in
2010 (ISO/IEC 1539-1:2010) [26, 30]. The main objective of CAF
is to simplify the development of parallel applications without
the burden of explicitly invoking communication primitives or
directives, such as those available in the Message-Passing Interface
(MPI) [23] or OpenMP [7].

The programming model of CAF is based on the Partitioned
Global Address Space (PGAS) model, in which every process is able
to access a portion of the memory address space available on other
processes using shared-memory semantics. A program that uses
CAF is treated as a replicated entity, commonly referred as image.
This is similar to the concept of “rank” in MPI terminology. An
image is assigned a unique index, that is represented by a number
between 1 and the number of images (inclusive). In order to identify
a specific image at runtime or the total number of images, Fortran
provides the this_image() and num_images() functions.

Each image executes asynchronously until the programmer ex-
plicitly synchronizes it through one of the synchronization mecha-
nisms available in the standard. For instance, the “sync all” state-
ment serves as a barrier and guarantees the synchronization of the
different images1. Any variable can be declared as coarray inside
an image, which can be represented by a scalar or array, static or
dynamic, and of intrinsic or derived type. Applications access a
coarray object on a remote image using square brackets “[index]”.
An object with no square brackets is considered local to the process.

In this context, extending the concept of coarray to become per-
sistent requires no major changes into the Fortran standard. In
particular, while the specification mostly describes the semantics
and respective functionality to interact between coarrays located
on different images, it does not restrict the supporting technology
where the specific coarray is pinned to (e.g., NVDIMM [19, 24]).
Moreover, the different synchronization mechanisms, already avail-
able in the Fortran standard, provide an opportunity to guarantee
data consistency with storage as necessary. As a consequence, the
integration of resilient coarrays inside CAF is expected to become
feasible in the near-term future.

1Source code contained between synchronization points represents a segment. Here,
only get operations are guaranteed to conclude before the synchronization barrier.

Heterogeneous Compute Node

Network Card

Memory

CPU

Local Storage (e.g., STT-RAM)

CPU

Interconnect
(e.g., EDR)

Local Storage (e.g., V-NAND Flash)

GPU

H
B

M

Parallel File System (e.g., GPFS)

GPU

H
B

M

GPU

H
B

M

GPU

H
B

M

Interconnect (e.g., NVLINK)

Figure 1: Compute nodes of upcoming supercomputers fea-
ture local storage technologies. The diagram is inspired by
the hardware configuration of Summit (ORNL) [33, 36].

···

SSD

NVMeNVRAM S
to

rag
e C

ap
acity

Local Storage (Intra-Node)

Lustre GPFS

···

Remote Storage (Inter-Node)

MPI Implementation

Put/Get

MPI

Rank

0

MPI

Rank

1

MPI

Rank

N

MPI

Rank

2
···

Put/Get Put/Get Put/Get

DRAM

Shared Memory (Intra-Node)

HDD

Figure 2: MPI storage windows provides seamless access to a
diverse range of memory and storage technologies through
the MPI one-sided communication model [31].

In this section, we present the design and implementation details
of persistent coarrays, an extension that seamlessly allows the inte-
gration of fault-tolerance mechanisms on CAF-based applications.
Thereafter, we provide further insight into how this approach could
be adopted by the Fortran community and illustrate a source code
example that demonstrates its usage.

2.1 Design and Implementation
We design and implement persistent coarrays as an extension inside
the OpenCoarrays communication library for CAF compilers2 [11].
The implementation extends the release version v2.6.3 and consists
of approximately 100 lines of code changes in comparison. It also
supports the same standardized CAF functionality of the original.

OpenCoarrays is a collection of open-source transport layers
that assist CAF compilers by translating the communication and
synchronization requests into specific primitives from other com-
munication libraries (e.g., OpenSHMEM [5]). The GNU Fortran
(GFortran) compiler has integrated OpenCoarrays since the GNU
Compiler Collection (GCC) v5.1.0 release. The front end of GFor-
tran is designed to remain agnostic about the actual transport layer
employed in the communication. By default, GFortran uses the

2https://github.com/sourceryinstitute/OpenCoarrays/tree/MPISWin

https://github.com/sourceryinstitute/OpenCoarrays/tree/MPISWin

Persistent Coarrays: Integrating MPI Storage Windows in Coarray Fortran EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

MPI_Win_allocate

MPI_Win_sync

...

MPI Storage Window

Image

CAF

MPI Storage Window

Coarray / x Coarray / y

OpenCoarrays_1_0.win OpenCoarrays_1_1.win

Transport Layer / LIBCAF_MPI

Independent File Independent File

(a) File-per-process Configuration

MPI_Win_allocate

MPI_Win_sync

...

MPI Storage Window

Image

CAF

MPI Memory Window

Coarray / x Coarray / y

OpenCoarrays_2_0.win

Independent File No File Mapping

Transport Layer / LIBCAF_MPI

(b) Mixed Persistent + Non-Persistent

MPI_Win_allocate

MPI_Win_sync

...

MPI Storage Window

Image

CAF

MPI Storage Window

Coarray / x Coarray / y

OpenCoarrays_3.win

offset

Shared File

Transport Layer / LIBCAF_MPI

(c) Shared-file Configuration

Figure 3: By integrating the concept of MPI storage windows inside the transport layer of OpenCoarrays, we can enable seam-
less access to storage to create the concept of persistent coarrays in CAF. For instance, different processes might map their
coarrays into individual or shared files, and might be able to combine persistent and non-persistent coarrays in the future.

LIBCAF_MPI transport layer of OpenCoarrays, which is based on the
MPI one-sided communication model [14, 16]. Here, coarrays are
represented as MPI memory windows and accessed using put / get
internally through the passive target synchronization of MPI-3 [23].

We extend the MPI-based transport layer of OpenCoarrays to
integrate the concept of MPI storage windows [31]. This on-going
effort proposes to raise the level of programming abstraction by
using MPI one-sided communication and MPI windows as a unified
interface to access a diverse range of memory and storage tech-
nologies (Figure 2). MPI windows provide a familiar interface that
can be used to program data movement among hybrid memory
and storage subsystems, allowing to map MPI windows to files.
Thus, coarrays can immediately benefit from this integration and
transparently expose resilient variables inside images. The use of
persistent coarrays could considerably reduce the programming
complexity on HPC applications, while providing support for differ-
ent fault-tolerance mechanisms, such as checkpoint-restart [4, 17].

Existing CAF applications compiled with GFortran and the ex-
tendedOpenCoarrays implementation, will seamlessly convert their
traditional coarrays (i.e., memory-based) into persistent coarrays
(i.e., storage-based). In most cases, no specific source code changes
are required.We also extend the synchronization statements defined
in the CAF specification to automatically enforce consistency be-
tweenmainmemory and storage. This is accomplished by internally
calling MPI_Win_sync with the MPI storage window associated to
each coarray. Further information is provided in Section 2.2.

For compatibility reasons with the Fortran standard, persistent
coarrays are configured through several environment variables. If a
specific version of OpenCoarrays does not support persistent coar-
rays, the environment variables are simply ignored and applications
use traditional coarrays in memory instead.

These are the new variables introduced in our implementation:
• PCAF_ENABLED. If set to “true”, it enables support for per-
sistent coarrays in the application. Otherwise, the coarrays
will be allocated in memory (default).

• PCAF_PATH. Defines the path where the files corresponding
to each coarray are mapped. This allows to support different
storage targets (e.g., local or remote storage). The name of
each file is automatically generated using the image index,
allowing to remap the content between executions.

• PCAF_PREFIX. Determines the prefix to be used for each
coarray file. By default, “OpenCoarrays_” is assigned.

• PCAF_SHAREDFILE. If set to “true”, it allows the use of a
single shared file that will contain the coarrays of a given
image. Otherwise, a file per coarray is created (default).

• PCAF_UNLINK. If set to “true”, removes the associated files
after execution (i.e., useful for out-of-core with coarrays).

• PCAF_SYNCFREQ. Specifies the synchronization frequency
limit expected after each synchronization. The aim is to pre-
vent frequent synchronizations with storage (see Section 2.2).

• PCAF_SEGSIZE. Defines the segment size utilized in the spe-
cific MPI storage window where the coarray is mapped. By
default, the current page-size available at runtime is set.

• PCAF_STRIPESIZE. Sets the striping unit to be used for the
mapped file (e.g., stripe size of Lustre). This hint has no effect
on existing files and/or local storage.

• PCAF_STRIPECOUNT. Sets the number of I/O devices that the
mapped file should be striped across (e.g., OSTs on Lustre).
This hint has no effect on existing files and/or local storage.

In order to allocate a persistent coarray inside a certain CAF
image, we create a dedicated MPI storage window and configure it
through performance hints provided to the MPI_Win_allocate call.

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Sergio Rivas-Gomez et al.

1 ...

2 ! Declare two coarrays and other variables

3 real , dimension (10), codimension [*] :: x, y

4 integer :: num_img , img

5
6 ! Retrieve the index and the number of images

7 img = this_image ()

8 num_img = num_images ()

9
10 ! Perform certain operations accross images

11 x(2) = x(3)[7] ! Get value from image 7

12 x(6)[4] = x(1) ! Put value on image 4

13 x(:)[2] = y(:) ! Put a complete array on image 2

14
15 ! Enforce synchronization point , which guarantees

16 ! a data synchronization with storage as well

17 sync all
18
19 ! Remote array transfer , with ind. synchronization

20 if (img == 1) then
21 y(:)[num_img] = x(:)

22 sync images(num_img)

23 elseif (img == num_img) then
24 sync images ([1])

25 endif
26 ...

Listing 1: Source code example that illustrates how to use
coarrays in Fortran. The source codewill use persistent coar-
rays if compiled with our version of OpenCoarrays.

The MPI hints determine the location of the mapping to storage and
define other hardware-specific settings. We use the environment
variables described to configure some of these settings. For instance,
applications that use CAF can continue to allocate coarrays in mem-
ory by avoiding to set the environment variable PCAF_ENABLED, or
by setting it to “false”. To enable persistent coarrays, it is enough
to define the aforementioned variable with a “true” value instead.
The rest of the described environment variables are optional and
will strictly depend on the particular use-case where persistent
coarrays is integrated. By default, the active path is used to store
the different files that support the coarrays.

The current implementation of MPI storage windows is based
on the use of the memory-mapped file I/O mechanism of the OS [3].
Target files from an MPI storage window are first opened, mapped
into a virtual address space, and then associated with the MPI
window. Even though a better implementation of the mapping
mechanism of MPI storage windows is expected to be available
soon, we found unexpected issues in our preliminary evaluations
and decided to focus on the stable release3.

Figure 3 summarizes the integration of several persistent coar-
rays with their correspondent MPI storage windows. The first
image contains two persistent coarrays that are mapped into the
virtual memory space and assigned into two separate files on stor-
age. After the mapping is established, the MPI storage windows
implementation is responsible for migrating data from memory to
storage, and vice-versa. The second image is similar to the previous
one, but allocating the coarray y in memory instead (see Section 2.4).
In addition, the figure illustrates one of the CAF images sharing

3https://github.com/sergiorg-kth/mpi-storagewin

a file through the PCAF_SHAREDFILE environment variable setting.
The offset of each persistent coarray follows the program order
and is calculated internally (i.e., it cannot be currently configured).

2.2 Considerations for Data Consistency
The flexibility of MPI storage windows can introduce several chal-
lenges in regards to data consistency. First and foremost, local or
remote operations are only guaranteed to affect the memory copy
of the window inside the target image. This fact implies that the
semantics of the MPI one-sided operations only ensure completion
of the local or remote operations inside main memory4 (i.e., the
storage status might be undefined). The semantics for the oper-
ations are similar to the “public + private” copies of the window
in MPI-2 [16]. Thus, we use MPI_Win_sync to enforce data consis-
tency on each mapped image, as necessary. Read operations, on the
other hand, will still trigger data accesses to storage automatically.

Using persistent coarrays, applications are required to perform
an explicit synchronization of the images when consistency of the
data within the storage layer has to be preserved. For this purpose,
we extend part of the available synchronization primitives in CAF:

• Collective synchronization. Enforces a barrier-like syn-
chronization, in which all the processes ensure RDMA com-
pletion (as in CAF) plus a synchronization with storage. This
is accomplished with “sync all”.

• Individual synchronization. Enforces individual synchro-
nization between groups of images, without involving the
rest. This is accomplished with “sync images([indices])”.

Applications can choose whether to always synchronize with
storage during each synchronization point (default), or to limit
the amount of data synchronizations performed to improve the
overall performance. The environment variable PCAF_SYNCFREQ
determines the interval of time in milliseconds in which a persistent
coarray is considered outdated. For instance, setting a value of 500
implies that the synchronization of the persistent coarrays will only
take effect at least after every 500ms. This setting is inspired by the
vm.dirty_expire_centisecs provided by the OS5.

Lastly, it is important to take into account that Fortran provides
locks, critical sections, atomic intrinsics, and events. Using these
operations, applications can guarantee data consistency even when
multiple images are accessing the same target coarray.

2.3 Using Persistent Coarrays
Listing 1 illustrates a source code example using persistent coarrays.
Here, the application begins by declaring two coarrays x and y, with
10 floating-point values each. The use of codimension[*] requests
the compiler to define these as CAF coarrays, instead of traditional
Fortran arrays. The brackets determine the layout and distribution
of the images, which is set by default in this case.

Thereafter, the example retrieves the index and also the num-
ber of images, similar to retrieving the rank and the size of the
MPI_COMM_WORLD communicator in MPI [16]. Multiple operations
are then performed across the images, using the square brackets

4This limitation does not strictly apply when using NVDIMM memories [24], that are
expected to be accessible through RDMA when widely available.
5https://www.kernel.org/doc/Documentation/sysctl/vm.txt

https://github.com/sergiorg-kth/mpi-storagewin
https://www.kernel.org/doc/Documentation/sysctl/vm.txt

Persistent Coarrays: Integrating MPI Storage Windows in Coarray Fortran EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

“[index]” syntax to specify the target image for the put / get oper-
ation being conducted. A global synchronization is also requested,
which will guarantee not only that the data has been transferred
across the different images, but that the persistent coarray is syn-
chronized with storage. Finally, the source code performs a remote
array transfer and shows how to enforce an individual synchro-
nization between two pair of images.

Note that the example is also valid for traditional coarrays (i.e.,
the support for persistent coarrays is provided at compiler level).

2.4 Expected API for Persistent Coarrays
The presented implementation in OpenCoarrays seamlessly allows
to convert existing coarrays into persistent coarrays. Despite the
simplicity of our approach, we also consider that it imposes several
constraints. For instance, it is currently not possible to differentiate
individually between persistent and non-persistent coarrays.

Even though the design of a specific API for persistent coarrays
has been considered out of the scope of this work, we provide below
further insight about how the concept could pave its way into a
generalized API that might even influence the Fortran standard in
the future. We consider three different alternatives:

Keyword in Fortran. Extending the declaration of a coarray to
become persistent could be possible by the integration into the stan-
dard of a “persistent” keyword, provided during the declaration
of the coarray. The main limitation of this approach is that it would
require changes into the CAF specification in the Fortran standard.
Furthermore, the path must still be configured by other means (e.g.,
through environment variables or a data-placement runtime).

real, persistent :: a(n)[*] ! Simplified declaration
real, dimension(n), persistent, codimension[*] :: a

Compiler Directives. Instead of forcing changes into the Fortran
standard, an alternative could be to define a mechanism using
directives. The support for this approach is at compiler level, and
provides the opportunity to configure the persistent coarray (e.g.,
path). The declaration of the coarray would be almost identical.

!dir$ persistent, path, ...
real, dimension(n), codimension[*] :: a ! No changes

Library API. Alternatively, OpenCoarrays could expose specific
functionality to extend the definition of a coarray to become persis-
tent (e.g., similar to the mechanism used by DMAPP [34]). The main
advantage of this option is that it does not depend on the Fortran
standard or the compiler, as long as OpenCoarrays is the transport
layer for CAF. In addition, the path is individually configured for
each coarray file (i.e., instead of a base path for all the files).

real, dimension(n), codimension[*] :: a ! No changes
...
call opencoarrays_config(a, "persistent", "path", ...)

We plan to examine the possibilities of these and other ap-
proaches in future work on this topic.

3 EXPERIMENTAL RESULTS
In this section, we illustrate the performance of persistent coarrays
using a reference testbed of the National Center for Atmospheric
Research (NCAR). This testbed allows us to demonstrate the implica-
tions of our approach on upcoming clusters with local persistency
support, that also combine traditional parallel file systems. The
specifications of the testbed are described below:

• Casper is a cluster with 28 heterogeneous compute nodes
equipped with Intel Xeon Gold 6140 (Skylake) processors
running at 2.3GHz. The group used in our tests contains
two sockets with 18 cores and a total of 384GB DRAM per
node. Storage is provided through 2TB of local NVMe SSD
drives per node, alongside a GPFS parallel file system with
approximately 15PB. The network uses Mellanox VPI EDR
InfiniBand dual-port interconnect. The OS is CentOS 7 with
Kernel v3.10.0-693.21.1.el7.x86_64 . The applications are com-
piled with GCC v7.3.0 and OpenMPI 3.1.4. The transport layer
is provided by OpenCoarrays v2.6.3 with our extension.

The figures reflect the standard deviation of the samples as error
bars. We use the PMPI-based [20] implementation of MPI storage
windows inside OpenCoarrays for deployment reasons on Casper.
We set the default values for most of the I/O settings of the library.
In addition, we also use the default GPFS settings, assigning a block
size of 8MB and a sub-block of 16KB. The evaluations are conducted
on different days and timeframes, to account for the interferences
produced by other users on the cluster. Note that, after this section,
we continue and extend the discussion on the obtained results.

3.1 EPCC CAF Microbenchmark Suite
We first verify that the integration of MPI storage windows in
the transport layer of OpenCoarrays does not incur in additional
overheads when performing remote memory operations. This can
be useful to existing CAF-based applications that aim to integrate
resiliency support, but do not necessarily enable it by default.

For this purpose, we use the Fortran Coarray Microbenchmark
suite from the University of Edinburgh (EPCC) [18]. This open-
source project6 focuses on a small set of low-level operations, such
as put, get, strided put, strided get, and typical communi-
cation patterns, like halo exchange. Their performance is then
measured in terms of bandwidth and latency in isolation, using
double-precision floating-point values.

Every basic operation is analyzed in two different scenarios: sin-
gle point-to-point and multiple point-to-point. We focus on the for-
mer, in which a given CAF image interacts with another one located
inside the same node (i.e., intra-node communication), and also out-
side the node (i.e., inter-node communication). In this scenario,
there is no network contention to expect. To prevent interferences
on the results, we avoid to enforce a storage synchronization.

Figure 4 illustrates the measured bandwidth of traditional coar-
rays, as well as persistent coarrays that use local storage (NVMe)
and the parallel file system (GPFS) available on Casper. The evalua-
tions conduct single andmulti-node evaluations, using two different

6https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-
benchmarking/epcc-co-array-fortran-micro

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-co-array-fortran-micro
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-co-array-fortran-micro

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Sergio Rivas-Gomez et al.

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
2000
4000
6000
8000
10000
12000
14000

Block Size

Ba
nd

w
id
th

(M
B/
s)

(a) Single-Put (Single Node / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
2000
4000
6000
8000
10000
12000
14000

Block Size

Ba
nd

w
id
th

(M
B/
s)

(b) Single-Get (Single Node / 2 procs.)

12
8B 64
B

32
B

16
B 8B 4B

0
5
10
15
20
25
30
35

Stride Size

Ba
nd

w
id
th

(M
B/
s)

(c) Strided-Put (Single / 2 procs.)

12
8B 64
B

32
B

16
B 8B 4B

0
5
10
15
20
25
30
35

Stride Size

Ba
nd

w
id
th

(M
B/
s)

(d) Strided-Get (Single / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
2000
4000
6000
8000
10000
12000
14000

Block Size

Ba
nd

w
id
th

(M
B/
s)

(e) Single-Put (Multi-Node / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
2000
4000
6000
8000
10000
12000
14000

Block Size

Ba
nd

w
id
th

(M
B/
s)

(f) Single-Get (Multi-Node / 2 procs.)

12
8B 64
B

32
B

16
B 8B 4B

0
5
10
15
20
25
30
35

Stride Size

Ba
nd

w
id
th

(M
B/
s)

(g) Strided-Put (Multi / 2 procs.)

12
8B 64
B

32
B

16
B 8B 4B

0
5
10
15
20
25
30
35

Stride Size

Ba
nd

w
id
th

(M
B/
s)

(h) Strided-Get (Multi / 2 procs.)

Memory Persistent (NVMe) Persistent (GPFS)

1

Figure 4: Measured bandwidth of traditional coarrays in memory, as well as persistent coarrays on local storage (NVMe) and
a parallel file system (GPFS) using the EPCC CAFMicrobenchmarks. The tests run on 2 different processes located on a single
node (a-d) and on two nodes (e-h) of Casper, and evaluate both single and strided put / get operations.

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
130
260
390
520
650
780

Block Size

La
te
nc
y
(µ
s)

(a) Single-Put (Single Node / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
130
260
390
520
650
780

Block Size

La
te
nc
y
(µ
s)

(b) Single-Get (Single Node / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
130
260
390
520
650
780

Block Size

La
te
nc
y
(µ
s)

(c) Single-Put (Multi Node / 2 procs.)

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K
B

25
6K
B

0
130
260
390
520
650
780

Block Size

La
te
nc
y
(µ
s)

(d) Single-Get (Multi Node / 2 procs.)

Figure 5: Measured latency of persistent coarrays on local
storage (NVMe) using the EPCCCAFMicrobenchmarks. The
tests run on 2 processes located on a single node (a-b) and on
two nodes (c-d) of Casper.

processes / images. The results indicate that no relevant perfor-
mance differences are observed when conducting put / get opera-
tions, including when using strided accesses. The use of persistent
coarrays even reflects slightly better results compared to traditional
coarrays, featuring approximately a 4% improvement on average.
We assume that this side-effect is due to how the implementation of
MPI storage windows allocates memory in comparison with the de-
fault memory allocator provided by the OpenMPI implementation
used in our experiments.

On the other hand, Figure 5 shows the latency of the previ-
ous evaluation, illustrating in this case only the results for persis-
tent coarrays that use local storage (NVMe). From the results, we
observe that put operations generally feature lower latency and
higher-bandwidth, even for large data transfers. However, get op-
erations incur in additional overheads, degrading the access latency
exponentially as the block size increases. For instance, for a block
size of 256KB using two different nodes of Casper, the latency of
a get operation is 2.14× slower in comparison. Nonetheless, we
must note that the results for traditional coarrays and persistent
coarrays in a parallel file system do not differ7.

3.2 Parallel Research Kernels
We now evaluate persistent coarrays using the Parallel Research
Kernels (PRK) from Intel Corporation [35]. This collection of ker-
nels covers some of the most common patterns of communication,
computation, and synchronization encountered in parallel HPC
applications. Thus, we use PRK to understand the implications of
persistent coarrays under representative workloads.

The CAF implementation of PRK8 provides three computational
kernels. We pick the most relevant two. The first kernel is Stencil,
that applies a data-parallel stencil operation to a two-dimensional
array. The second kernel is Transpose, that stresses communica-
tion and memory bandwidth with regular, unit strided reads, and
non-unit strided writes (and vice versa). Compared to the previous
evaluation, in this case we enforce storage synchronizations dur-
ing the execution of the aforementioned kernels. Thus, we try to
understand the possible performance considerations of persistent
coarrays with full storage support.
7For illustration purposes, we decided to provide only the results for persistent coarrays
on local NVMe storage.
8https://github.com/ParRes/Kernels/tree/master/FORTRAN

https://github.com/ParRes/Kernels/tree/master/FORTRAN

Persistent Coarrays: Integrating MPI Storage Windows in Coarray Fortran EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

Figure 6 illustrates the performance of traditional coarrays in
memory, as well as persistent coarrays that use local storage (NVMe)
and the parallel file system (GPFS) available on Casper. The eval-
uations utilize a grid dimension of 8192×8192, and perform 10
iterations. The results illustrate that the use of local storage for
persistent coarrays can be beneficial. For 128 processes (4 nodes),
the performance improves 2.1× in comparison when observing the
Transpose kernel. Moreover, due to the problem size, the limited
amount of I/O operations required for persistent coarrays makes it
produce identical results compared to coarrays in memory.

4 DISCUSSION
We further extend the discussion concerning the results given in
the previous section and additional observations.

Local Storage Performance. The trend for large-scale supercomputer
design is diverging from the traditional compute-only approach, to
hybrid solutions that aim to reduce data movement inside the clus-
ter [25]. Local storage, such as the promising NVDIMMs [15, 19], is
integrated as a scratch tier that is part of the storage hierarchy of
the cluster. Despite using NVMe-based drives, our results on Casper
illustrate that the use of persistent coarrays on local storage pro-
vides enhanced performance compared to parallel file systems, like
GPFS. Consequently, this fact opens opportunities for neighbour
checkpoints (i.e., images replicate the state between nodes using
remote operations over persistent coarrays) or seamless out-of-core
execution (i.e., images exceed main memory transparently).

Importance of the MPI implementation. The default implementation
of MPI storage windows is based on the memory-mapped I/O mech-
anism of the OS, which imposes major constraints on certain HPC
applications [31]. In the context of the Sage2 EU-H2020 project [25],
we are developing a User-level Memory-mapped I/O (uMMAP-IO)
library that provides enhanced control of the data. Figure 7 illus-
trates preliminary results running on Cori from NERSC [2]. The
tests use a STREAM-inspired microbenchmark9 [22] designed to
stress the I/O subsystem. The results show promising performance
improvements with MPI storage windows based on uMMAP-IO in
comparison to MMAP-IO on different workloads, with up to 5×
increased throughput on average when using the Burst Buffer (not
supported by MMAP-IO) and up to 2.5× using Lustre. Thus, we
expect that future implementations of MPI storage windows would
dramatically improve the performance of persistent coarrays.

Opportunities for fault-tolerance. Despite not discussing specific
mechanisms for fault-tolerance in this work, we observe that persis-
tent coarrays can provide a tremendous opportunity to enable trans-
parent resilience support on HPC applications. Generalizing the API
of persistent coarrays, as previously described, would allow applica-
tions to alter the mapping of their respective coarrays and recover
after a failure. Moreover, the concept of “failed images” [12, 29],
recently introduced to the Fortran 2018 standard, could also pro-
vide the necessary tools to recover images that utilize persistent
coarrays. This would only require subtle source code modifications
on already existing applications that use CAF to parallelize their
code. We plan to explore this opportunity in future work.

9https://github.com/sergiorg-kth/mpi-storagewin/tree/master/benchmark

32 64 128
0

0.3
0.6
0.9
1.2
1.5
1.8

Num. Processes

Ex
ec
.T

im
e
(s
)

(a) Stencil Kernel Evaluation

32 64 128
0

0.9
1.8
2.7
3.6
4.5
5.4
6.3

Num. Processes

Ex
ec
.T

im
e
(s
)

(b) Transpose Kernel Evaluation

Memory Persistent (NVMe) Persistent (GPFS)

1

Figure 6: Performance of traditional coarrays inmemory, as
well as persistent coarrays on local storage (NVMe) and a
parallel file system (GPFS) using reference PRKkernels. The
tests run on 1, 2 and 4 nodes of Casper with a grid of 8192.

SEQ PAD RND MIX
0

500
1000
1500
2000
2500

Kernel Type

Ba
nd

w
id
th

(M
B/
s)

(a) Kernel Eval. (32 procs.)

2 4 8 16 32
0

1500
3000
4500
6000
7500

Num. Processes

Ba
nd

w
id
th

(M
B/
s)

(b) Weak Scaling (SEQ / Ind. BW)

Memory uMMAP-IO (BBF)
uMMAP-IO (Lustre) MMAP-IO (Lustre)

1

Figure 7:Measured bandwidth ofMPImemorywindows and
MPI storage windows using mSTREAM on a single-node of
Cori [2], and varying the implementation type.

5 RELATEDWORK
Designing a fault resilient system can be done at different levels
of the software stack. The general-purpose technique most widely
used in HPC relies on checkpointing and rollback recovery: parts
of the execution are lost when processes are subject to failures, and
the fault-tolerant protocol, when catching such errors, uses past
checkpoints to restore the application in a consistent state, and
recomputes the missing parts of the execution.

For the purpose of this work, a runtime library is in charge of per-
forming the checkpointing by using the new concept of persistent
coarrays. The checkpointing is implemented almost at compiler
level. In [9], the authors propose a similar approach to the one
proposed in our work; however, their work focuses strictly on MPI
one-sided whereas our work focuses more on the integration of
the MPI Storage Windows [31] with the coarray semantics. The
concept of compiler-based transparent fault-tolerance treated in
this work is not new, and presented in [32] by Rodriguez et al.

Because the checkpointing mechanism is hidden by the compiler
and runtime library, the way the data is stored can be changed
transparently by the user (by using an environment variable). In [1,
10], the authors show that a combination of regular DRAM and SSD
can be used to avoid writing all the checkpoints on disk, without
impacting the possibility of recovering from failures. We plan to
explore the implementation of such hybrid solution in future work.

https://github.com/sergiorg-kth/mpi-storagewin/tree/master/benchmark

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Sergio Rivas-Gomez et al.

6 CONCLUSION AND FUTUREWORK
The inherent increase in number of hardware and software com-
ponents on HPC, will likely aggravate the amount of hardware
and software failures faced by scientific applications [4, 28]. In this
paper, we have presented the concept of persistent coarrays, an
extension to the coarray specification of Coarray Fortran that pro-
vides seamless resilience support. Thus, the approach enables the
integration of fault-tolerance mechanisms for CAF in the future.

Preliminary results have demonstrated that no performance
penalties are introduced by the integration of MPI storage windows
with OpenCoarrays when performing remote memory operations.
In addition, the performance of persistent coarrays using local stor-
age provides clear advantages compared to the use of traditional
parallel file systems, like GPFS.

As future work, we plan to explore the integration of persistent
coarrays as part of the recovery mechanism of failed images [12]
on HPC applications. In addition, we also expect to evaluate the
integration of the user-level memory-mapped I/O mechanism that
is currently being developed for MPI storage windows [31].

ACKNOWLEDGMENTS
The experimental results were performed on resources provided
by the National Center for Atmospheric Research (NCAR) in the
United States, as well as resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of En-
ergy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231 (Project ID: OpenCoarrays_FT).

Part of this work was also funded by the European Commission
through the Sage2 project (Grant agreement no. 800999). More
information at http://www.sagestorage.eu.

REFERENCES
[1] Nilmini Abeyratne, Hsing-Min Chen, ByoungchanOh, Ronald Dreslinski, Chaitali

Chakrabarti, and Trevor Mudge. 2016. Checkpointing Exascale Memory Systems
with Existing Memory Technologies. In Proceedings of the Second International
Symposium on Memory Systems (MEMSYS ’16). ACM, New York, NY, USA, 18–29.
https://doi.org/10.1145/2989081.2989121

[2] Katie Antypas, NicholasWright, Nicholas P Cardo, AllisonAndrews, andMatthew
Cordery. 2014. Cori: A Cray XC Pre-exascale System for NERSC. Cray User Group
Proceedings. Cray (2014).

[3] Daniel P Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: from I/O
ports to process management. O’Reilly.

[4] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
2009. Toward Exascale Resilience. The International Journal of High Performance
Computing Applications 23, 4 (2009), 374–388.

[5] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM, 2.

[6] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Train-
ing deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024 (2014).

[7] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API
for shared-memory programming. Computing in Science & Engineering 1 (1998).

[8] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-
Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braun-
schweig, et al. 2011. The International Exascale Software Project Roadmap. The
International Journal of High-Performance Computing Applications 25, 1 (2011).

[9] Piotr Dorożyński, Paweł Czarnul, Artur Malinowski, Krzysztof Czuryło, Łukasz
Dorau, Maciej Maciejewski, and Paweł Skowron. 2016. Checkpointing of parallel
MPI applications using MPI one-sided API with support for byte-addressable
non-volatile RAM. Procedia Computer Science 80 (2016), 30–40.

[10] H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin. 2017. Efficient Checkpointing
of Loop-Based Codes for Non-volatile Main Memory. In 2017 26th International

Conference on Parallel Architectures and Compilation Techniques (PACT). 318–329.
https://doi.org/10.1109/PACT.2017.58

[11] Alessandro Fanfarillo, Tobias Burnus, Valeria Cardellini, Salvatore Filippone, Dan
Nagle, and Damian Rouson. 2014. OpenCoarrays: Open-source Transport Layers
supporting Coarray Fortran compilers. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models. ACM, 4.

[12] Alessandro Fanfarillo, Sudip Kumar Garain, Dinshaw Balsara, and Daniel Nagle.
2019. Resilient Computational Applications using Coarray Fortran. Parallel
Comput. 81 (2019), 58–67.

[13] Michael Feldman. 2017. Oak Ridge readies Summit supercomputer for 2018 debut.
in: Top500.org, http://bit.ly/2ERRFr9. [On-Line].

[14] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2014. Enabling highly-
scalable remote memory access programming with MPI-3 one sided. Scientific
Programming 22, 2 (2014), 75–91.

[15] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.
2019. Single Machine Graph Analytics on Massive Datasets Using Intel Optane
DC Persistent Memory. arXiv preprint arXiv:1904.07162 (2019).

[16] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. 2014. Using
advanced MPI: Modern features of the message-passing interface. MIT Press.

[17] WilliamGropp and Ewing Lusk. 2004. Fault tolerance inmessage passing interface
programs. The International Journal of High Performance Computing Applications
18, 3 (2004), 363–372.

[18] David Henty. 2011. A Parallel Benchmark Suite for Fortran Coarrays. In Parallel
Computing. Elsevier, 281–288.

[19] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic Performance Measurements of the Intel Optane DC Persistent Mem-
ory Module. arXiv preprint arXiv:1903.05714 (2019).

[20] Edward Karrels and Ewing Lusk. 1994. Performance analysis of MPI programs.
In Proceedings of the Workshop on Environments and Tools For Parallel Scientific
Computing. 195–200.

[21] Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William
Constable, Oguz Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrow-
shahi, Carey Kloss, Ruby J Pai, and Naveen Rao. 2017. Flexpoint: An Adaptive
Numerical Format for Efficient Training of Deep Neural Networks. In Advances
in Neural Information Processing Systems 30 (NIPS 2017). 1740–1750.

[22] John D McCalpin. 1995. A survey of memory bandwidth and machine balance in
current high performance computers. IEEE TCCA Newsletter 19 (1995), 25.

[23] MPI Forum. 2015. MPI: A Message-Passing Interface Standard. Vol. 3.1. http:
//mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf. Accessed: 2019-04-21.

[24] Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew Warfield. 2015.
Non-volatile storage. Commun. ACM 59, 1 (2015), 56–63.

[25] Sai Narasimhamurthy, Nikita Danilov, Sining Wu, Ganesan Umanesan, Stefano
Markidis, Sergio Rivas-Gomez, Ivy Bo Peng, Erwin Laure, Dirk Pleiter, and Shaun
De Witt. 2018. SAGE: Percipient Storage for Exascale Data-centric Computing.
Parallel Computing (2018).

[26] Robert W Numrich and John Reid. 1998. Co-Array Fortran for parallel program-
ming. In ACM Sigplan Fortran Forum, Vol. 17. ACM, 1–31.

[27] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. 2017. Exploring the Performance Benefit of Hybrid Memory
System on HPC Environments. In Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017 IEEE International. IEEE, 683–692.

[28] Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (2015), 56–68.

[29] John Reid. 2018. The new features of Fortran 2018. In ACM SIGPLAN Fortran
Forum, Vol. 37. ACM, 5–43.

[30] John Reid and Robert W Numrich. 2007. Co-arrays in the next Fortran Standard.
Scientific Programming 15, 1 (2007), 9–26.

[31] Sergio Rivas-Gomez, Roberto Gioiosa, Ivy Bo Peng, Gokcen Kestor, Sai
Narasimhamurthy, Erwin Laure, and Stefano Markidis. 2018. MPI Windows
on Storage for HPC Applications. Parallel Computing 77 (2018), 38–56.

[32] Gabriel Rodríguez, María J. Martín, Patricia González, Juan Touriño, and Ramón
Doallo. 2010. CPPC: A Compiler-assisted Tool for Portable Checkpointing of
Message-passing Applications. Concurr. Comput. : Pract. Exper. 22, 6 (April 2010),
749–766. https://doi.org/10.1002/cpe.v22:6

[33] David Schneider. 2018. US supercomputing strikes back. IEEE Spectrum 55, 1
(2018), 52–53.

[34] Monika ten Bruggencate and Duncan Roweth. 2010. DMAPP - An API for
One-sided Program Models on Baker Systems. In Cray User Group Conference.

[35] Rob F Van der Wijngaart and Timothy G Mattson. 2014. The Parallel Research
Kernels. In 2014 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 1–6.

[36] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland, Al Geist, James
Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley, Sarp Oral, Don EMaxwell,
et al. 2018. The design, deployment, and evaluation of the CORAL pre-exascale
systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. IEEE Press, 52.

http://www.sagestorage.eu
https://doi.org/10.1145/2989081.2989121
https://doi.org/10.1109/PACT.2017.58
http://bit.ly/2ERRFr9
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1002/cpe.v22:6

	Abstract
	1 Introduction
	2 Persistent Coarrays
	2.1 Design and Implementation
	2.2 Considerations for Data Consistency
	2.3 Using Persistent Coarrays
	2.4 Expected API for Persistent Coarrays

	3 Experimental Results
	3.1 EPCC CAF Microbenchmark Suite
	3.2 Parallel Research Kernels

	4 Discussion
	5 Related Work
	6 Conclusion And Future Work
	Acknowledgments
	References

