CAF Events Implementation Using MPI-3 Capabilities

Alessandro Fanfarillo
National Center for Atmospheric Research
Boulder, CO, USA
elfanfa@ucar.edu

ABSTRACT

MPI-3.1 is currently the most recent version of the MPI
standard. It adds important extensions to MPI-2, includ-
ing a simplified semantic for the one-sided communication
routines and a new tool interface, capable of exposing per-
formance data of the MPI implementation to users and li-
braries. These and other new features make MPI-3 a good
candidate for being the transport layer of PGAS languages
like Coarray Fortran.

OpenCoarrays, the free coarray implementation used by
the GNU Fortran compiler, implements almost all Coarray
Fortran 2008 and several Coarray Fortran 2015 features on
top of MPI-3. Among the Fortran 2015 features, one of
the most relevant for performance improvement is events;
such a feature represents a fine grain synchronization mech-
anism based on a limited implementation of the well known
semaphore primitives.

In this paper, we analyze two possible implementations of
events using MPI-3 features and show how to dynamically
select the best implementation, according to the capabilities
provided by the MPI implementation. We also show how
events can improve the overall performance by reducing idle
times in parallel applications.

Keywords
MPI; PGAS; Coarray; Fortran

1. INTRODUCTION

Since the release of the MPI-2 standard in 2007, lots of
changes have happened in the High Performance Computing
(HPC) world. Massively parallel systems with over a million
of cores are now a reality; Remote Direct Memory Access
(RDMA) support in networks has become mainstream, al-
lowing to overlap communication with computation and im-
proving collective communication performance; single-core
processors have disappeared and multi-threading program-
ming has become very important for applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

EuroMPI ’16, September 25 - 28, 2016, Edinburgh, United Kingdom

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4234-6/16/09. .. $15.00

DOI: http://dx.doi.org/10.1145,/2966884.2966916

Jeff Hammond

Intel Corporation
) Portland, OR, USA
jeff.r.hammond@intel.com

In order to address these new challenges in HPC, the MPI-
3 standard has introduced several changes. In particular,
major changes have been made on the one-sided communi-
cation routines in order to overcome the limitations docu-
mented by Bonachea et al. [5]. Furthermore, new features
like non-blocking and neighbor collectives, shared-memory
programming and new functionalities for the inspection and
manipulation of MPI control and performance variables have
been added.

With the increasing availability of the RDMA support in
computer networks, the so called Partitioned Global Address
Space (PGAS) model has evolved in the last few years. The
PGAS model is a parallel programming model that assumes
a global memory address space logically partitioned, with
a portion of the memory being assigned to a specific pro-
cessor. The model attempts to combine (and get the best
from) the Single Program Multiple Data (SPMD) approach,
used in the distributed memory systems, and the semantic of
shared memory systems. In the PGAS model, every process
has its own memory address space but it can share a portion
of its memory with other processes. Some languages that im-
plement the PGAS model are: Coarray Fortran (CAF) [25,
26], Unified Parallel C (UPC) [30], Chapel [8], Fortress [2],
X10 [9] and Global Arrays [24].

Several features introduced in the MPI-3 standard, in par-
ticular the new Remote Memory Access (RMA) support,
have made MPI a good candidate for being used as trans-
port layer for PGAS languages. OpenCoarrays [16], the free
coarray Fortran implementation used by the GNU Fortran
compiler, relies on MPI-3 to implement the coarray fea-
tures specified in the Fortran 2008 and Fortran 2015 stan-
dard. Although the coarray operations usually have a good
matching with the MPI one-sided routines, the lack of fully
asynchronous support in MPI implementations and/or net-
works [7] represents a big limitation to the realization of a
high-performing coarray implementation.

In this paper, we show how the MPI-3 features can be used
to implement events: a fine-grain synchronization mecha-
nism introduced in the Fortran 2015 standard, capable of re-
ducing idle times in parallel applications and, consequently,
improving the overall performance.

The rest of this paper is organized as follows: Section 2
introduces Coarray Fortran and the new features of the For-
tran 2015 standard. Section 3 shows pros and cons of using
MPI as transport layer for PGAS languages; in particular
highlights the difficulties for having truly asynchronous sup-
port and how PGAS languages can benefit from the new fea-
tures introduced in MPI-3. Section 4 describes a dynamic

selection algorithm used for choosing the best events imple-
mentation. Section 5 describes the test cases used for the
performance evaluations of two events implementations. In
Section 7, we report the results of our tests and show that
an efficient implementation of events can brought a speedup
up to 2x compared to other solutions. Finally, in Section 9
we provide our conclusions.

2. FORTRAN 2015

Coarray Fortran (also known as CAF) is a syntactic ex-
tension of Fortran 95/2003 which was proposed in the early
1990s by Robert Numrich and John Reid [25] and is now part
of the Fortran 2008 standard (ISO/IEC 1539-1:2010) [26].
The main goal of coarrays is to allow Fortran users to create
parallel programs without the burden of explicitly invoking
communication functions or directives such as with MPI and
OpenMP.

The coarray definition included in Fortran 2008 defines a
simple syntax for accessing data on remote images, synchro-
nization statements and collective allocation and dealloca-
tion of memory on all images. Although these features allow
one to write a totally functional coarray program, they do
not allow to express more complex and useful mechanisms
for synchronization, images organization and failure man-
agement.

Technical Specification 18508 [21] proposes the following
extensions to the coarray facilities defined in Fortran 2008:

o teams;

e failed images;

e cvents;

e new atomic and collective procedures.

Teams allows one to execute more effectively and indepen-
dently parts of a larger problem by grouping the images into
non-overlapping teams. A class of problems that can benefit
of such feature is multiphysics codes (e.g., climate models).

Failed images provides a mechanism to identify what im-
ages have failed during the execution of a program. This
obviously affects the resilience of programs running on large
systems.

Events provide a convenient mechanism for ordering exe-
cution segments on different images without requiring that
those images arrive at synchronization point before any is
allowed to proceed. This feature implements a fine grain
synchronization mechanism based on a limited implementa-
tion of the well known semaphore primitives. In this work,
we show the potential of this feature and the challenges re-
lated to its efficient implementation using MPI.

Fortran 2008 does not provide intrinsic procedures for
commonly used collective operations and provides only min-
imal support for atomic memory operations. Such proce-
dures can be highly optimized for the target computational
system, providing significantly improved program perfor-
mance. A typical example of collective operation introduced
by TS-18508 is co_broadcast. This intrinsic allows one to
broadcast data from a source image to a group of images
as one single command. In Fortran 2008, the only way to
implement this operation is to run a do-loop on the source
image and perform a “put” operation on each target image,
one at a time. TS-18508 enriches the available set of atomic
intrinsics (e.g., new atomic_fetch_and_op intrinsics).

All the features defined in TS-18508 are going to be part
of the Fortran 2015 standard.

2.1 Coarray Synchronization Methods

As already mentioned in Section 2, events provide a fine
grain synchronization mechanism, based on a limited im-
plementation of semaphores, capable of improving paral-
lelism in coarray applications. In order to understand how
events can improve parallelism, we present the synchroniza-
tion methods provided by Fortran 2008 and highlight the
main differences.

A program that uses coarrays is treated as if it were repli-
cated at the start of execution; each replication is called
an image. Each image executes asynchronously and explicit
synchronization statements are used to maintain program
correctness.

A piece of code contained between synchronization state-
ments is called segment and a compiler is free to apply
all its optimizations inside a segment. On each image P,
the statement execution order determines the segment or-
der (Pi, P2,...). A pair of segments P; and Q; are called
unordered if P; neither precedes nor succeeds @Q;. There are
restrictions on what is permitted in a segment that is un-
ordered with respect to another segment. In particular, un-
less the variable is atomic (or event), if a variable is defined
in a segment on an image, it must not be referenced, defined
or become undefined in a segment on another image unless
the segments are ordered (for more details about segments
and restrictions we suggest to read Metcalf et al. [23]).

The full list of image control statements of Fortran 2008
is:

e sync all statement;

e sync images statement;

o lock or unlock statements;

e sync memory statement;

e allocate or deallocate statements involving coar-

rays;

critical or end critical statements;

e end or return statement that involves an implicit deal-
location of a coarray;

e a statement that completes the execution of a block
and results in an implicit deallocation of a coarray;

e stop or end program statement.

These image control statements synchronize with all or a
part of the images composing a program.

For example, the sync all statement represents a bar-
rier for all images, whereas sync images(image-set) per-
forms a synchronization of the image that executes it with
each of the other images in its image-set. Even though sync
images (image-set) represents a more flexible way to syn-
chronize images, it always implies a synchronization between
execution flows of several images. This may lead to idle
times on one or more images, waiting for a slower image
to reach the synchronization statement. Figure 1 depicts a
typical scenario where Image 1 needs an entire array A from
Image 2. Because Image 1 terminates the computation ear-
lier than Image 2, it will wait until Image 2 reaches the sync
images statement.

In order to reduce this phenomenon as much as possible,
Fortran 2008 defines a set of atomic subroutines capable
of performing an action on a remote coarray variable in-
stantaneously. This “atomic” behavior allows to break the
segment partial ordering and, potentially, to improve the
performance by reducing idle times. Unfortunately, atomic

Image 1 Image 2
m
= L_
EL
[=2]
: c
o a
£
o
(@]

Sync Images(2) -

Idle

- Syncimages(l)

BO=AMRI * s

Figure 1: Get operation using sync images

Image 1 Image 2
o !
=
o - Event post (ev[1])
= —
5}
(@]

Event wait (ev) !

B(:) = A()[2]

Computing

Get data

Figure 2: Get operation using events

subroutines (sometimes called atomics), as defined in For-
tran 2008, have been revealed quite difficult to use correctly.

2.1.1 Events

Events represent the safer and more general implemen-
tation of atomics. An event coarray variable can be seen
as a counter that can be incremented by any image, us-
ing the subroutine event post; this subroutine never blocks
and should return as quick as possible. An image can wait
for the event variable to reach a predefined value of posted
events using the event wait subroutine; this blocking sub-
routine can be invoked only on local variables. Since an
image may want to check the value of a local event vari-
able without waiting, an event_query subroutine is also
provided. The main difference of events from the general
semaphores stands in the local applicability of the event
wait and event_query subroutines; this restriction makes
events safer, easier to use and highly performing. Figure 2
depicts the same scenario shown in Figure 1 using events. It
is obvious that the event_post implementation must be as
much as efficient and asynchronous as possible in order to
obtain high performance.

3. MPI AS A PGAS TRANSPORT LAYER

The Message Passing Interface (MPI) execution model,
thanks to its high performance, portability and standardiza-
tion, is a de-facto standard in the High Performance Com-
puting world and is installed and tuned on all supercom-
puters. The MPI standard has evolved from the initial
version of 1994 and currently incorporates direct remote
memory access (RMA) through one-sided functions, multi-
threading support, non-blocking and sparse collective com-
munication operations and dynamic process management.
Such new features make MPI-3 a good candidate for be-
ing the transport layer of PGAS languages [11]. In particu-
lar, the asynchronous communication required by the PGAS
model can be easily implemented on top of the RMA one-
sided functions of MPI-3. Although these operations map
very well on the RDMA read and write operations provided
by HPC network fabrics (like Cray*Gemini [33], IBM*Blue
Gene/Q [34] and InfiniBand [35]), the synchronization mod-
els associated with the MPI one-sided operations are some-
what complicated. The MPI standard provides two synchro-
nization modes: active and passive. In the active mode, the
target process participates in the synchronization whereas,
in the passive mode, the target process does not participate
in the synchronization. In the latter case, all the processes
accessing the memory exposed by a remote process have to
synchronize amongst themselves, without participation of
the target process. From the point of view of providing sup-
port for a PGAS language, the passive mode is the most suit-
able; in fact, it allows to overlap communication with com-
putation, by reducing the synchronization penalty. Imple-
menting passive MPI one-sided functions, even on network
interfaces able to perform RDMA operations in hardware,
may require the MPI implementation to check for transfer
completion in order to progress the communication. In or-
der to perform this check, the MPI library has to be called
during the program execution. If the main program is busy
doing other tasks (e.g., computation), the transfer cannot
complete and it must be postponed until the target invokes
the MPI library.

Passive

Lock All

Exclusive Shared

Figure 3: Taxonomy of MPI RMA synchronization motifs.

Asynchronous message progress is a very intricate and
controversial topic in high-performance computing [6, 18,
19]. With the current available high-performance networks,
there are essentially three strategies for asynchronous progress:
programmer-directed progress, software-based progress (us-
ing threads, interrupts or processes, and hardware-based

progress. The manual progress gives complete control and
responsability to the programmer for implementing mes-
sage progress. A common solution for programmer-directed
progress is to invoke functions like MPI_Iprobe that cause
the implementation to enter the progress engine. Although
this solution increases code complexity, it is a portable way
to achieve asynchronous progress that does not entail the

overheads associated with thread-based asynchronous progress

within the MPI library, which is the most common imple-
mentation today.

Hoefler et al. [19] describe and analyze the thread-based
approach. They conclude that thread-based progress based
on polling (bypassing the OS) is beneficial only when sep-
arate computation cores are available for the progression
thread. Using an interrupt-based approach (passing through
the operating system) might be helpful in the case of over-
subscribed nodes (the progress and user threads share the
same core). In either case, passing through the operating
system raises two concerns: 1) it seems unclear how big the
interrupt latency and overheads are on a modern systems; 2)
the scheduler has to schedule the progress thread right after
the interrupts arrive so as to achieve asynchronous progress.
This second issue can be faced by using real-time function-
alities in the Linux kernel.

In [29], Si et al. propose to use dedicated communication
processes (called ghost processes) for managing inter-node
data transfers using two-sided communication. Once the
data is received on the ghost process(es), it is delivered to
the destination process using the MPI-3 shared memory ca-
pability. This mechanism ensures asynchronous progress on
every process without incurring in any issue related to the
use of threads.

Many hardware technologies have supported RMA-like
features in hardware, and in these implementations, asyn-
chronous progress does not require user- or software-agency.
Many generations of Cray networks possess such features,
including T3D [22], T3E [28], X1 [15] and X1E, Gemini [3]
and Aries [1], as do IBM Blue Gene/P and Blue Gene/Q [10].
However, no known implementation to-date has supported
all of the features of MPI RMA in hardware, which means
that these cannot be true offload implementations. It is
worth to mention that the Elan network hardware produced
by Quadrics* [27] has been able to support all the MPI RMA
features until the closure of the company in 2009.

The most common hardware features related to MPI RMA
are remote read, write and some atomic operations, which
are essential to PGAS programming models like SHMEM.
Some of the features of MPI RMA that are less likely to be
found implemented in hardware are floating-point atomic
operations and noncontiguous buffers, both of which have
been part of MPI RMA since MPI-2. Fortunately, conser-
vative semantics make it possible to implement MPI RMA
using a mixed implementation (hardware and software), at
some loss of efficiency relative to a pure hardware implemen-
tation.

3.1 MPI Tool Information Interface

Understanding the performance issues of an MPI code is
an operation that requires low-level information; for exam-
ple, knowing how much time is spent in an MPI_Recv can help
to understand whether the application suffers of poor load
balancing or just high communication costs. Such a low-level
information is usually hidden into the internal variables of

the MPI implementation. For example, a typical informa-
tion that can be useful to know (used also in this work) is
how many messages are in the Unezpected Message Queue
waiting to be received?.

With the new tools information interface introduced in
MPI-3, MPI provides a standard way to access performance
data contained inside the MPI implementation (called per-
formance wvariables) and to internal variables that control
the behavior of the implementation (called control variables).
A typical control variable is the one that defines the thresh-
old, associated with the message size, that decides whether
a message should be sent using the eager or rendezvous pro-
tocol.

Although the performance variables are common to any
MPI implementation (e.g., Unexpected Message Queue length),
the MPI Forum does not specify a direct way to get the sta-
tus of these variables. The reason is that such a low-level
concepts are not MPI concepts; in other words, they are
common but not necessary part of an implementation. For
the case of the Unexpected Message Queue length variable,
some MPI implementations may use a different approach to
manage unexpected messages, such as rejecting and asking
for a re-transmission instead of queuing. The intent of the
MPI tools information interface is to enable an MPI im-
plementation to expose implementation-specific details; for
this reason is not possible to define variables that all MPI
implementations must provide.

3.2 OpenCoarrays

OpenCoarrays [16] is an open-source software project for
developing, porting and tuning transport layers that support
coarray Fortran compilers. It targets compilers that con-
form to the coarray parallel programming feature set spec-
ified in the Fortran 2008 standard. It also supports several
features proposed for Fortran 2015 in the draft Technical
Specification TS-18508 “Additional Parallel Features in For-
tran” [21]. OpenCoarrays uses a 3-clause BSD-style open-
source license to facilitate its incorporation into free and
proprietary compiler software and it is currently used by
the GNU Fortran compiler. OpenCoarrays defines an appli-
cation binary interface (ABI) that translates high-level com-
munication and synchronization requests into low-level calls
to a user-specified communication run-time library. This
design decision liberates compiler teams from hardwiring
communication-library choice into their compilers and it frees
Fortran programmers to express parallel algorithms once,
and reuse identical CAF source with whichever communica-
tion library is most efficient for a given hardware platform.
At the time of this writing, OpenCoarrays covers almost all
the Fortran 2008 coarray features, events and the collec-
tive/reduction and new atomic intrinsics belonging to the
Fortran 2015 standard.

Since the first release of OpenCoarrays (August 2014),
the widest coverage of coarray features was provided by a
MPI based run-time library (LIBCAF_MPI). Because of the
one-sided nature of coarrays, 99% of the run-time library
uses MPI one-sided communication routines based on pas-
sive synchronization.

On the compiler side (GFortran), a coarray variable is
represented by two entities: a) a token that stores the MPI
window and b) a descriptor structure, that stores the address
of the local variable and other information such as lower and
upper bounds, rank and datatype. When a coarray state-

ment is found in the source code, the compiler translates
the statement into an invocation to the right OpenCoarrays
routine. During this operation, both token and descriptor
are passed to OpenCoarrays.

Despite the good matching of coarray one-sided seman-
tics and MPI one-sided routines, it should be noted that the
behavior of some MPI routines may differ from the CAF
counterpart. A typical example is the difference between
MPI_Get and getting data from a remote coarray variable.
For MPI_Get, the function call returns before the data ar-
rives; the programmer can only assume that the operation

has completed after a synchronization call (like MPI_Win_Flush).

For coarrays, the Fortran semantics related to a variable as-
signment has to be respected; this means that the program-
mer can assume that the data has arrived as soon as the
read operation returns.

3.3 Events using MPI

The most intuitive and straightforward implementation of
events is the one based on Remote Memory Access (RMA)
atomic operations and spin-locks. An event element is as-
sumed to be a counter initialized to zero during the start-up
phase; an invocation of event post is translated into an
atomic increment of the target event variable. An invoca-
tion of even wait is translated into a spin-lock waiting for
the counter (local event variable) to reach a predefined value.
From now on we will refer to this approach as RMA-events.

The performance of this atomic-based implementation is
strictly related to the performance of the MPI atomic op-
erations and to the contention caused by several processes
updating the same variable. In MPI 3, the atomic oper-
ations needed to implement this solution are represented
by passive one-sided accumulate and fetch_and_op routines
(MPI_Accumulate and MPI_Fetch_and_op).

As already explained in Section 3, asynchronous message
progress is one of the most critical issues to address when
MPI one-sided routines are used to implement PGAS func-
tionalities. This is more than ever true when atomic func-
tionalities are implemented on top of passive MPI one-sided
routines, where latency is usually a critical factor. In case
of a manual progress approach, the (passive) atomic opera-
tion completes only when the target invokes an MPI rou-
tine. Evidently, this is not a feasible way to implement
a fine grain synchronization mechanism. Using a progress
thread, based on interrupt or polling, seems to be a good
alternative but unfortunately the latency introduced by the
continuous polling or by the Operating System (interrupt)
penalizes the performance. Finally, the ofload MPI progress
approach suffers of the lower performance of the embedded
processors compared to CPUs. Summarizing, an event im-
plementation based on one-sided atomic operations suffers
of high latency and low performance due to MPI message
progress mechanisms and contention on the event variable.
A good way to provide low latency is to use two-sided com-
munication; in fact, the data transfer is managed directly by
the CPUs (that guarantees low latency) and MPI progress
does not represent an issue anymore.

Because an image can post an event on a variable owned
by a remote image asynchronously, the only way to ensure
this behavior is to rely on the eager protocol, on the sender
side, and on the Unexpected Message Queue (UMQ) on the
receiver side. The eager protocol assumes that the receiver
has enough space in its temporary buffers to store the mes-

sage that is going to be sent. Such an assumption leads to
minimal latency but holds only for short messages.

During an event post(), the image sends a small amount
of data (2 integers) using the MPI_Send function to the re-
mote image. Because of the small amount of data exchanged,
the MPI_Send function (adopting the eager protocol) will not
block and the data will be stored in a pre-allocated buffer
on the receiver side. When an image invokes an event wait
subroutine it spins in a while loop containing an invocation
to the MPI_Recv routine; the loop terminates when the num-
ber of events directed to the target event variable is equal to
the predefined value passed to the event wait subroutine.
During this loop, the UMQ is examined and shrunk when
a match with the predefined tag is found. From now on we
will refer to this approach as P2P-events.

Even though this approach leads to minimal latency and
truly asynchronous communication, it is based on the Unex-
pected Message Queue (unsafe practice) and implementation
specific protocols (eager protocol). The UMQ is designed to
manage situations where messages arrive but a correspond-
ing receive has not been posted yet (thus there is not a buffer
designated to it). When the application on the receiver side
posts a MPI_Recv, the queue is traversed and, if a match is
found, the message is copied into the specified buffer and
then removed from the UMQ. If the receiver does not call
MPI_Recv, the UMQ starts to grow without bounds until:
1) the memory occupied by the UMQ reaches a threshold
specified by the MPI implementation or 2) all the RAM on
the machine get occupied by the UMQ. In both cases, the
program may crash or produce unexpected behaviors.

Summarizing, the RMA-events approach (that uses atomic
MPI one-sided routines), leads to more stable results but
also suffers of poor performance; on the other hand, the
P2P-events approach (that uses a two-sided approach) leads
to better performance but relies on unsafe mechanisms. Al-
though relying on the UMQ is considered theoretically un-
safe, it is practically safe as long as the queue status is kept
under control.

In this work, we propose an events implementation based
on both strategies; the selection of the best strategy is done
dynamically, based on the support provided by the MPI im-
plementation. In order to implement this algorithm safely,
the control and performance variable described in 3.1 must
be used.

4. DYNAMIC APPROACH SELECTION

As we already stated in Section 3.3, there are two main
approaches to implement events in OpenCoarrays: RMA-
events and P2P-events; both of them have pros and cons
related to performance and stability. In this section we
describe how to realize a dynamic selection of the events
implementation, using the MPI Tool Information Interface
capability provided by the MPI-3 standard.

4.1 Approach Selection

The idea is to start the execution using the P2P-events
approach, in order to favor performance, and fallback to
the RMA-events approach when the P2P-events reaches the
limit or if the performance variables exposed by the MPI
implementation do not allow to check the status of the UMQ
and/or the eager protocol is not implemented.

In Algorithm 1 we sketch how the approach selection works
during the execution of a coarray program.

1 Initialize RMA-events and P2P-events variables;
2 if UMQ perf var AND eager control var then
3 decide threshold for UMQ;
4 select P2P-events;
5 else
6 | select RMA-events;
7 end
8 selection check;
9 while program not terminated do
10 if P2P-events then
11 if UMQ > threshold then
12 broadcast switch to RMA;
13 empty UMQ queue from events;
14 select RMA-events;
15 end
16 if switch_to_ RMA received then
17 empty UMQ queue from events;
18 select RMA-events;
19 end
20 end
21 end

Algorithm 1: Approach selection

At line 1, the variables associated with both approaches,
RMA and P2P, are initialized.

At line 2, OpenCoarrays checks whether the performance
and control variables for UMQ and eager protocol are avail-
able or not. This control is performed during the Open-
Coarrays initialization, before executing any other program
instruction. Because the variable names are not standard-
ized, OpenCoarrays should know a-priori these names for
all possible MPI implementations. Although this represents
a strong restriction, it should be noted that OpenCoarrays
recommends to use a small subset of all MPI implementa-
tions (MPICH and MPICH derivatives like MVAPICH?2).
Converting the recommendation into a requirement would
have a tolerable negative impact on the user community but
a great improvement from the performance standpoint.

If the variables associated with UMQ and eager protocol
are available, OpenCoarrays decides a threshold for the max-
imum UMQ length and selects the P2P-events approach.
Otherwise, RMA-events is selected and the library will not
select any other approach during the execution.

At line 8, right after the initial selection, OpenCoarrays
checks that every image made a consistent decision about
which approach to use; assuming to have a private variable
with value 0 or 1 associated with RMA-events or P2P-events,
this control can be easily performed with a MPI_Reduce.
Note that every image executes this statements during the
initialization.

The code contained between line 9 and line 21 represents
the program execution. The control statement ranging from
line 10 to 20 is intended to happen inside the OpenCoarrays
library, anytime an OpenCoarrays routine is invoked. At
line 10, the library checks whether the P2P-events approach
has been selected; if this is the case, it reads the performance
variable associated with the UMQ length using the MPLT
interface and checks if its value is greater than the predefined
threshold (line 11). In this case (lines 12-15), the image that
has noticed the condition warns all the other images that it
is switching to the RMA-events approach (switch_to. RMA

message); this communication is performed with an MPI_Put
routine. Then, it empties the UMQ queue from the events
already posted and not yet read. Finally, it switches to the
RMA-events approach and it will never change approach
again.

At line 17, the images check whether any other image has
sent a switch_to_RMA message or not. If this is the case,
each image empties the UMQ queue from the events already
posted and selects the RMA-events approach.

Note that the scope of this algorithm is to fall back to a
“safe” implementation when the application puts too much
pressure on the UMQ. Even though switching to the RMA
mode when the UMQ reaches the limit for the first time may
appear too restrictive, the overhead introduced by switching
back and forth from P2P and RMA may have a serious im-
pact on the overall performance and may also increase the
risk of loosing synchronization messages.

4.2 P2P-events in OpenCoarrays

The idea behind P2P-events is to implement an event
post using a MPI_Send for sending a short message composed
by only two integers. The first integer represents a unique
identifier associated with the event variable, common to any
image; the second one represents an offset, meaningful only
when the coarray variable is an array. The fact that the
message is only two integers long and the presence of the
eager control variable, ensure that the MPI_Send completes
immediately without blocking.

Because a coarray variable must exist and be allocated on
every image, it is easy to generate a unique identifier for each
event variable. In our implementation, Image 1 is in charge
of keeping a counter that is incremented by one every time
an event variable is created. Right after the generation of the
ID, Image 1 performs a MPI_Bcast in order to propagate the
unique ID to every other image. Right after the broadcast,
every image stores the unique ID into a structure.

As we mentioned in Section 3.2, GNU Fortran manages
coarray variables using: 1) a token used for accessing the re-
mote coarray variable (it usually stores the MPI window); 2)
a local variable used for common Fortran computation. An
hypothetical implementation of P2P-event (without consid-
ering a RMA-based implementation), would store the struc-
ture containing the event ID into the token variable. Such
a solution would generate a non-coherent situation with the
other coarray variables that use the token as a MPI window.

In order to make the situation coherent and have both
RMA- and P2P-event available, we decided to store the
structure containing the unique ID and other information
as a RMA window attribute attached to the MPI window
used for the RMA-event implementation.

S. PARALLEL RESEARCH KERNELS

The Parallel Research Kernels (PRK) suite [12, 32, 31]
focuses on providing a set of kernels that covers the most
common patterns of communication, computation and syn-
chronization encountered in parallel HPC applications. The
suite is publicly available on GitHub' and currently pro-
vides parallel kernels written in a number of different pro-
gramming models (OpenMP, MPI two-sided, MPI one-sided,
MPI+OpenMP, UPC, SHMEM, Charm++-, Grappa, Python,
etc.).

"https://github.com/ParRes/Kernels

@
o2
H‘.

(b) Step 2

s

o
e e

(a) Step 1

o<« 0
® o

Figure 4: Instance of p2p_sync kernel

In order to show the potential of events and the impact
of the different implementations, we decided to transform
two kernels of the Parallel Research Kernels suite, already
written in Fortran 2008 coarrays, to Fortran 2015.

5.1 Sync_p2p Kernel

The first kernel, called sync_p2p, implements a stencil
code with a demanding data dependence that is typically
resolved using a fine-grain software pipeline technique. A
typical instance of this kernel is shown in Figure 4: in order
to be computed, a component in position (i,j) requires data
from the components in position (i-1,j), (i,j-1) and (i-1,j-1);
as shown in Figure 4b, it is possible to compute in parallel
several columns of the grid (pipeline among columns). A
parallel example of this kernel is depicted in Figure 5, where
Image 2 cannot start the computation on its second column
because of the data dependency with Image 1. In this case,
it is important to have a fine-grain synchronization mech-
anism capable to inform Image 2 that the data needed is
ready to be taken.

In the Coarray Fortran 2008 (from now on CAF 2008) ver-
sion already included in the PRK suite, the synchronization
among images is implemented with sync images statements.
This mechanism allows to the image that has invoked it to
synchronize only with the set of images passed as argument.
In a case like the one depicted in Figure 5 with 3 images
involved, Image 2 would stop twice: one for synchronizing
with Image 1 (where Image 2 is the “consumer”) and one
with Image 3 (where Image 2 is the “producer”).

Events represent the most efficient mechanism for dealing
with this sort of producer-consumer problems. The idea is
to associate an event variable to each column of the grid;
as soon as a “producer” (upper) image has completed the
computation on its own column, it posts the event to the
correspondent event variable on the “consumer” image. Be-
cause the event post routines is always non-blocking, the
producer is free to continue the remaining computation. On
the other hand, the “consumer” image waits for a single,
specific, event related only to the data needed.

5.2 Stencil Kernel

The second kernel, called stencil, applies a data-parallel
stencil operation to a two-dimensional array. It features mul-
tiple streams of regular but different strides on read, which
benefits from efficient prefetching. This kernel represents
one of the most common communication pattern in scientific
computing: the halo exchange. In fact, many applications
in high performance computing use domain decomposition
techniques to distribute the work among different processing
elements. To manage synchronization overheads, each de-
composed domain is logically overlapped at the boundaries

Image 1

® ®
®

0«0

Image 2

Figure 5: Parallel pipelined execution of p2p_sync kernel

and is updated with neighbor values before the computation
proceeds. This update on the overlapped regions is called
halo exchange.

Execution

LONNI3%4

\J

Figure 6: Data availability for halo exchange in stencil kernel

In the example reported in Figure 6, it is assumed that
computation proceeds in a column-wise fashion; as soon as
the first column has been computed, the halo exchange with
the left neighbor can be performed. At the same way, as soon
as the first row as been computed (after n-1 columns have
been computed), the data is ready for the halo exchange
with the upper neighbor.

Using CAF 2008, the only way to safely perform an halo
exchange is to use a sync all statement or a sync images
accompanied with a list of selected images, even though the
data needed may be ready long before the synchronization

statements.

With events it is possible to completely remove any syn-
chronization statement by looking at the algorithm as a
produce/consumer problem. Assuming a “push” approach,
where the process that produces the data pushes it to the
neighbors’ halo region, two event variables are needed for
each side of the grid: one representing the data availability
on the local halo region (from now on called ready variables)
and another one representing the permission to overwrite the
halo on the remote process (from now on called consumed
variables).

During the data partitioning, the halo exchange is per-
formed as part of the partitioning process and the events
associated with the data availability are posted. At the
beginning of the actual computation (usually a loop), the
application performs an event wait on each ready variable.
Once all the data is in the halo region (trivial for the first
iteration) the computation starts. At the end of the com-
putation, each image notifies the neighbors that the data
contained in the halo region has been consumed by posting
an event on the consumed coarray variables of the neighbors.
Immediately after this notifications, each image waits on its
own consumed variables. As soon as a halo region becomes
available the data is sent using a coarray “put”. Once the
“put” has returned, the image posts an event on the ready
variable of the correspondent neighbor.

The advantages brought by this approach are twofold: 1)
the finer granularity of events allows to reduce idle times
compared to an implementation based on sync images; 2)

the “push” approach allows some computation/communication

overlapping if the underlying network and MPI implemen-
tation support it (as in the case of Stampede).

6. EXPERIMENTAL PLATFORMS

Each reported test has been run on two supercomputers:
Galileo and Stampede.

Galileo is a Tier-1 system operated by CINECA, the Ital-
ian supercomputing consortium. The compute nodes are
equipped with two Intel®Xeon®E5-2630v3 (Haswell) pro-
cessors (8 cores per chip, 2.40 GHz). The interconnect is
Intel True Scale QDR InfiniBand*.

The TACC (Texas Advanced Computing Center) Stam-
pede system is a 10 PFLOPS Dell*Linux*cluster based on
6400+ Dell PowerEdge server nodes, each outfitted with 2
Intel Xeon E5 (Sandy Bridge) processors. The nodes are
connected with Mellanox*FDR InfiniBand technology in a
2-level (cores and leafs) fat-tree topology.

The results reported in Section 7 show how the underlying
network influences the performance of the one-sided MPI
routines.

7. RESULTS

In this section, we aim to show two kind of results: 1)
how using events improves the performance of a parallel al-
gorithms and 2) a performance comparison between the two
approaches used for implementing events in OpenCoarrays.
Note that the performance of Algorithm 1 has not been an-
alyzed because the fallback from P2P to RMA can happen
at most once.

The sync_p2p kernel is a communication latency bound
problem: in the example depicted in Figure 5, computation
on Image 2 cannot proceed unless Image 1 reaches the bot-

tom of its grid. Figures 7 and 8 show the results of a weak
scaling study which compares a version based on sync im-
ages with one based on events. It is clear that, on both ma-
chines, the approach based on sync images (called SYNC)
has always lower performance than the P2P_EV approach
based on events. Furthermore, the charts show the remark-
able performance difference between RMA-events and P2P-
events.

3.5e+03

3.0e+03

2.5e+03 -

2.0e+03

MFlops

1.5e+03 |

1.0e+03

5.0e+02 -

0.0e+00

32 64
Cores

Figure 7: Sync_p2p kernel performance on Galileo

7.0e+03

6.0e+03 [

5.0e+03 -

4.0e+03

MFlops

3.0e+03 [

2.0e+03

1.0e+03

0.0e+00

32 64
Cores

Figure 8: Sync_p2p kernel performance on Stampede

The stencil kernel described in Section 5.2 can get great

benefits from the fine grain synchronization mechanism brought

by events, in particular when the network interconnect pro-

vides native support for Remote Direct Memory Access (RDMA).

Figures 9 and 10 show clearly how the P2P-events strategy
leads to better results for any number of cores, on both su-
percomputers. Furthermore, the Mellanox Infiniband net-
work installed on Stampede provides support for RDMA,
allowing to hide communication costs during the “put” op-
eration, with a resulting increase in overall performance.

2.2e+05

2.0e+05

1.8e+05

1.6e+05

1.4e+05

MFlops

1.2e+05

1.0e+05

8.0e+04

6.0e+04

4.0e+04

16 32 64 128
Cores

Figure 9: Stencil kernel performance on Galileo

2.4e+05

2.2e+05 [

2.0e+05

1.8e+05

1.6e+05

1.4e+05 -

MFlops

1.2e+05

1.0e+05

8.0e+04 -

6.0e+04

4.0e+04 -

2.0e+04
16 32 64 128

Cores

Figure 10: Stencil kernel performance on Stampede

8. RELATED WORK

The implementation of PGAS programming models us-
ing MPI RMA has been an active research and development
activity, starting with ARMCI-MPI [13], which initially tar-
geted MPI-2 but now supports MPI-3. Subsequent efforts
targeted the more flexible MPI-3 semantics and included
ports of OpenSHMEM [17] and Coarray Fortran [16, 20].
The recently developed DASH programming model also tar-
gets MPI-3 RMA as its communication runtime [36].

The Parallel Research Kernels have been used to evalu-
ate the efficiency of one-sided communication for point-to-
point communication in the context of proposed extensions
to OpenSHMEM [14] and MPI RMA [4]. Recent studies
have used the PRK suite to evaluate PGAS programming
models [32] and a more general set of programming mod-
els [31]; these implementations provide a means for compar-
ing Fortran coarrays to other PGAS models (SHMEM and
UPC) as well as various forms of MPI.

9. CONCLUSIONS

In this work, we have shown how the new features in-
troduced by the standard MPI-3 can be used by a PGAS
communication library to implement fine grain synchroniza-
tion mechanisms like CAF events. In particular, we have
shown how to use the control/performance variables exposed
by the MPI implementation (accessible through the MPI
Tool Information Interface) to implement a synchronization
mechanism based on the Unexpected Message Queue. This
implementation of events has reported the best results for
all tests, on every platform.

We have also shown the potential benefits brought by
events and the impact of their implementation on the overall
performance of typical scientific kernels.

10. ACKNOWLEDGMENTS

We gratefully acknowledge the support we received from
the following institutions: CINECA for the access on Galileo
for the project OpenCoarrays under the ISCRA grant pro-
gram for 2016. The Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by Na-
tional Science Foundation grant number ACI-1053575, for

the access on Stampede.
*Other names and brands may be claimed as property of others.

Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or
other countries. Software and workloads used in performance tests
may have been optimized for performance only on Intel micropro-
cessors. Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components, software, op-
erations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and per-
formance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined
with other products. For more information go to http://www.intel.

com/performance.

11. REFERENCES

[1] Cray XC series network. Technical Report
WP-Aries01-1112, Cray, 2012.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. L. Steele, and
S. Tobin-Hochstadt. The Fortress language
specification. Technical report, Sun Microsystems,
Inc., March 2008. Version 1.0.

[3] R. Alverson, D. Roweth, and L. Kaplan. The Gemini
system interconnect. High-Performance Interconnects,
Symposium on, 0:83-87, 2010.

[4] R. Belli and T. Hoefler. Notified access: Extending
remote memory access programming models for
Producer-Consumer synchronization. In IPDPS,
Hyderabad, India, May 2015.

[5] D. Bonachea and J. Duell. Problems with using MPI
1.1 and 2.0 as compilation targets for parallel
language implementations. International Journal of
High Performance Computing and Networking,
1(1-3):91-99, 2004.

[6] R. Brightwell and K. D. Underwood. An analysis of
the impact of MPI overlap and independent progress.
In Proceedings of the 18th Annual International
Conference on Supercomputing, ICS '04, pages
298-305, New York, NY, USA, 2004. ACM.

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

V. Cardellini, A. Fanfarillo, and S. Filippone.
Overlapping communication with computation in MPI
applications. Technical Report DICIT RR-16.09,
Universita di Roma Tor Vergata, Feb. 2016.
http://hdl.handle.net/2108/140530.

B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the Chapel language. Int. J.
High Perform. Comput. Appl., 21(3):291-312, Aug.
2007.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa,

A. Kielstra, K. Ebcioglu, C. von Praun, and

V. Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. SIGPLAN Not.,
40(10):519-538, Oct. 2005.

D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger,
Y. Sugawara, S. Kumar, V. Salapura, D. L.
Satterfield, B. Steinmacher-Burow, and J. J. Parker.
The IBM Blue Gene/Q interconnection network and
message unit. In 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC), pages 1-10, Nov 2011.

J. Daily, A. Vishnu, B. Palmer, H. van Dam, and

D. Kerbyson. On the suitability of MPI as a PGAS
runtime. In 21st International Conference on High
Performance Computing (HiPC), 2014, pages 1-10,
Dec 2014.

R. F. V. der Wijngaart and T. G. Mattson. The
parallel research kernels. In High Performance
Extreme Computing Conference (HPEC), 2014 IEEE,
pages 1-6, Sept 2014.

J. Dinan, P. Balaji, J. R. Hammond,

S. Krishnamoorthy, and V. Tipparaju. Supporting the
Global Arrays PGAS model using MPI one-sided
communication. In IPDPS, pages 739-750, May 2012.
J. Dinan, C. Cole, G. Jost, S. Smith, K. Underwood,
and R. W. Wisniewski. Reducing synchronization
overhead through bundled communication. In
OpenSHMEM and Related Technologies. Experiences,
Implementations, and Tools, pages 163-177. Springer,
2014.

T. H. Dunigan, Jr., M. R. Fahey, J. B. White III, and
P. H. Worley. Early evaluation of the Cray X1. In
Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, SC ’03, pages 18—, New York, NY,
USA, 2003. ACM.

A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone,
D. Nagle, and D. Rouson. OpenCoarrays: Open-source
transport layers supporting coarray Fortran compilers.
In PGAS, PGAS ’14. ACM, Oct. 2014.

J. R. Hammond, S. Ghosh, and B. M. Chapman.
Implementing OpenSHMEM Using MPI-3 One-Sided
Communication, pages 44-58. Springer International
Publishing, Cham, 2014.

T. Hoefler, G. Bronevetsky, B. Barrett, B. R. D.
Supinski, and A. Lumsdaine. Efficient MPI support
for advanced hybrid programming models. In Recent
Advances in the Message Passing Interface, volume
6305 of LNCS, pages 50-61. Springer, 2010.

T. Hoefler and A. Lumsdaine. Message progression in
parallel computing - to thread or not to thread? In
Proc. of 2008 IEEE Int’l Conf. on Cluster Computing,
pages 213-222, Sept. 2008.

20]

(21]

(22]

23]

[24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Intel. Distributed memory coarray Fortran with the
Intel Fortran compiler for Linux: Essential guide,
Nov. 2014.

ISO/IEC/JTC1/SC22/WGb5. TS 18508 additional
parallel features in Fortran, Aug. 2015.

R. E. Kessler and J. L. Schwarzmeier. Cray T3D: a
new dimension for Cray Research. In Compcon Spring
’93, Digest of Papers., pages 176-182, Feb 1993.

M. Metcalf, J. Reid, and M. Cohen. Modern Fortran
Ezplained. Oxford University Press, Inc., New York,
NY, USA, 4th edition, 2011.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: A nonuniform memory access
programming model for high-performance computers.
The Journal of Supercomputing, 10(2):169-189, 1996.
R. Numrich and J. Reid. Co-array Fortran for parallel
programming. SIGPLAN Fortran Forum, 17(2):1-31,
Aug. 1998.

R. W. Numrich and J. Reid. Co-arrays in the next
Fortran standard. SIGPLAN Fortran Forum,
24(2):4-17, Aug. 2005.

F. Petrini, W.-c. Feng, A. Hoisie, S. Coll, and

E. Frachtenberg. The Quadrics network:
High-performance clustering technology. IEEFE Micro,
22(1):46-57, Jan. 2002.

S. L. Scott and et al. The Cray T3E network:
Adaptive routing in a high performance 3D torus,
1996.

M. Si, A. Pena, J. Hammond, P. Balaji, M. Takagi,
and Y. Ishikawa. Casper: An asynchronous progress
model for MPI RMA on many-core architectures.
IPDPS ’15, pages 665—-676, May 2015.

UPC Consortium. UPC language specifications, v1.2.
Tech Report LBNL-59208, Lawrence Berkeley
National Lab, 2005.

R. F. Van der Wijngaart, A. Kayi, J. R. Hammond,
G. Jost, T. St. John, S. Sridharan, T. G. Mattson,

J. Abercrombie, and J. Nelson. Comparing runtime
systems with exascale ambitions using the Parallel
Research Kernels. In ISC High Performance, pages
321-339, 2016.

R. F. Van der Wijngaart, S. Sridharan, A. Kayi,

G. Jost, J. R. Hammond, T. G. Mattson, and J. E.
Nelson. Using the Parallel Research Kernels to study
PGAS models. In PGAS. IEEE, 2015.

A. Vishnu, J. Daily, and B. Palmer. Designing scalable
PGAS communication subsystems on Cray Gemini
interconnect. In 19th International Conference on
High Performance Computing (HiPC), 2012, pages
1-10, Dec 2012.

A. Vishnu, D. Kerbyson, K. Barker, and H. van Dam.
Building scalable PGAS communication subsystem on
Blue Gene/Q. In IPDPSW, pages 825-833, May 2013.
A. Vishnu and M. Krishnan. Efficient on-demand
connection management mechanisms with PGAS
models over InfiniBand. In CCGrid, pages 175-184,
May 2010.

H. Zhou, K. Idrees, and J. Gracia. Leveraging MPI-3
shared-memory extensions for efficient PGAS runtime
systems. In Furo-Par, pages 373-384, 2015.

