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Abstract. Accelerators such as NVIDIA GPUs and Intel MICs are currently pro-
vided as co-processor devices, usable only through a CPU host. For Intel MICs it is
planned that this constraint will be lifted in the near future: CPU and accelerator(s)
will then form a single, many-core, processor capable of peak performance of sev-
eral Teraflops with high energy efficiency. In order to exploit the available compu-
tational power, the user will be compelled to write a code more “hardware-aware”,
in contrast to the common philosophy of hiding hardware details as much as possi-
ble. The simple two-sided communication approach often used in message-passing
applications introduces synchronization costs that may limit the performance on
the next generation machines. PGAS languages, like coarray Fortran and UPC, pro-
pose a one-sided approach where a process accesses directly the remote memory
of another process without interrupting its execution. In this paper, we propose a
CUDA-aware coarray implementation, capable of merging the expressive syntax
of coarrays with the computational power of GPUs. We propose a new keyword
for the Fortran language, which allows the user to map with a high-level syntax
some hardware features of the many-core machines. Our hybrid coarray implemen-
tation is based on OpenCoarrays, the coarray transport layer currently adopted by
the GNU Fortran compiler.
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Introduction

In order to reach challenging performance goals, computer architecture will change sig-
nificantly in the near future. A large amount of research about exascale challenges has
been published and the main limitations to performance growth have been identified as:
1) energy consumption; 2) degree of parallelism; 3) fault resilience; 4) memory size and
speed [1].

The HPC community (software/hardware vendors, academia, and government agen-
cies) is designing the architecture for the next generation machines. In [2] the authors
use an abstract machine model in order to represent a possible exascale node architecture
(Fig. 1, reprinted with permission from [2])

1Accepted for publication in Proceedings of International Conference on Parallel Computing - ParCo2015,
Edinburgh, UK, September 2015.



Figure 1. Model of exascale node architecture

Figure 2. Current heterogeneous node with discrete accelerators

This representation depicts a heterogeneous node composed by two types of compu-
tational units: 1) fat cores (traditional CPU cores) suitable for algorithms with low level
of parallelism and 2) thin cores, providing high aggregate performance and high energy
efficiency. Another difference from today’s architectures is the presence of a low capacity
on-chip memory with high bandwidth. This new memory will likely be a multi channel
DRAM (MCDRAM), a variant of the Hybrid Memory Cube (HMC) technology [3,4].
The idea is to create a DRAM stack and couple it with a logic process for buffering and
routing tasks. This buffer layer makes the problem of data routing easier to solve.

The heterogeneous nature of the compute nodes (with fat and thin cores involved in
the computation), the frequency scaling performed for energy reasons, and the possible
fault of a compute node tend to break the assumption of homogeneous hardware con-
sidered by the bulk-synchronous model (BSP). In this model, each thread/process goes
through a computational phase, and then waits until all reach a full barrier; this is a very
regular pattern. The Partitioned Global Address Space (PGAS) parallel programming
model, implemented for example by coarray Fortran and Unified Parallel C (UPC), is
better suited for irregular and dynamic communication patterns and, in our opinion, is a
valid alternative to the common MPI two-sided approach.

In this work, we combine the ease of programming provided by coarray Fortran
with the power of NVIDIA GPUs; as far as we know, this is the first attempt to combine
these two technologies. The most common heterogeneous architecture currently in use



is represented in Fig. 2, where a multi-core CPU is connected with discrete accelerator
devices through a PCIe bus. In this paper we explore the use of hybrid coarrays on this
reference architecture to demonstrate the suitability of the coarray programming model
for the next generation of HPC platforms.

To account for the various memory layers present in the accelerators (in this case the
GPU), we propose a new variable attribute called “accelerated”. This attribute suggests
the compiler to store/treat the variable in a “fast” way on the heterogeneous node, thereby
delegating the memory management to the runtime environment. Work on heterogeneous
(MCDRAM and external DRAM) memory management systems has already appeared in
literature [5]; our proposal of an explicit keyword makes it possible to use such systems
in a very convenient way.

1. Background on Accelerators

In the HPC world, many-core co-processors are referred to as “accelerators”. Currently,
the most common accelerator cards available on the market are GPUs (mainly provided
by NVIDIA) and Intel Xeon Phi coprocessors, based on Intel Many Integrated Cores
(MIC) architecture. These devices are provided as a separate card to be plugged on the
PCI Express channel. Any such accelerator needs a CPU (called host), which actively
interacts with the accelerator in order to send/receive data and/or invoke computational
kernels. Accelerators are throughput-oriented, energy-efficient devices; since one of the
main challenges for exascale computing is power consumption, accelerators currently
represent the best option for breaking the “power wall”.

In 2014, the National Energy Research Scientific Computing Center (NERSC) an-
nounced that its next supercomputer, named “Cori”, will be a Cray system based on a
next-generation Intel MIC architecture; this machine will be a self-hosted architecture,
neither a co-processor nor an accelerator. In other words, the concept of accelerator as a
separate co-processor will disappear in the foreseeable future; such a deep change in the
processor architecture will require writing much more hardware-aware code in order to
exploit all the available computational power.

1.1. Architectural Changes - Intel Xeon Phi

Table 1 provides a comparison between an Intel Ivy-Bridge processor and an Intel Xeon
Phi Knights-Landing (KNL), thus illustrating the change between the current and future
generations of HPC platforms2.

There are two major changes when moving from a “classic” CPU to a KNL:

• More cores per node with longer vector registers;
• Two levels of memory with a small amount of very fast memory.

1.2. Architectural Changes - NVIDIA GPUs

The architectural changes proposed by NVIDIA for its next generation GPU (named
Pascal) are similar to those proposed by the Intel Xeon Phi:

2Edison and Cori are the names of the systems installed or planned at NERSC.



Features Edison (Ivy-Bridge) Cori (Knights-Landing)

Num. physical cores 12 cores per CPU 60+ physical cores per CPU

Num. virtual cores 24 virtual cores per CPU 240+ virtual cores per CPU

Processor frequency 2.4-3.2 GHz Much slower than 1 GHz

Num. OPs per cycle 4 double precision 8 double precision

Memory per core 2.5 GB Less than 0.3 GB of fast memory per core
and less than 2 GB of slow memory per core

Memory bandwidth ≈ 100 GB/s Fast memory has ≈ 5× DDR4

Table 1. Architectural changes (source: NERSC)

• More (and slower) cores;
• Fast 3D (stacked) memory for high bandwidth and energy efficiency;
• A new high-speed CPU-GPU interconnect called NVLink from 5 to 12 times

faster than the current PCIe.

With CUDA 6.0, NVIDIA accomplished one of the most important goals outlined
in CUDA 2.0: to provide a Unified Memory, that is shared between the CPU and GPU,
bridging the CPU-GPU divide.

Before CUDA 2.0, the only way to use memory on CUDA was to explicitly allocate a
segment and manually copy the data from the CPU to the GPU using the cudaMemcpy()
function. CUDA 2.0 introduced the zero-copy memory (also known as mapped memory);
this feature allows to declare a portion of memory on the CPU to be directly accessible
by the GPU. With this scheme the data movement is not directly coordinated by the
user. CUDA 4.0 witnessed the introduction of the Unified Virtual Address (UVA) space:
the CUDA runtime can identify where the data is stored based on the pointer value.
UVA support makes it possible to directly access a portion of memory owned by a GPU
from another GPU installed on the same node. In CUDA 6.0, NVIDIA introduced the
concept of managed memory: data can be stored and migrated in a user-transparent way
and the resulting code is thus much cleaner and less error-prone. At a first glance, zero-
copy memory and managed memory look the same: both relieve the user from explicitly
making copies from/to the GPU memory. The difference between the two is in when
the memory access is done: for zero-copy, the transfer is started when the memory is
accessed, whereas for managed memory the transfer is initiated immediately before the
launch and after the kernel termination.

1.3. Clusters of GPUs

On hybrid clusters equipped with CPUs and GPUs, the most common way to exploit
parallelism is through MPI for the inter-node communication, and CUDA for the GPU
computation. This approach requires explicit data movement from/to GPU/CPU in order
to send and receive data. In the latest evolution of both hardware and runtime libraries,
this task has been either included in the MPI GPU-aware implementations [6,7] or per-
formed with proprietary technologies, like GPUDirect. In [8] we compared the perfor-
mance of various manual data exchange strategies with a CUDA-aware MPI implemen-
tation using PSBLAS [9]; we concluded that the MPI CUDA-aware implementation is
largely sensitive to data imbalance.



2. Parallel Programming Models for Next Generation Architectures

The next computer architectures will expose hundreds of cores per single compute node;
this will require adaptations of the commonly used programming models. Most impor-
tantly, to feed the cores with enough data, the memory hierarchy will have to expand,
introducing additional layers between the cores and the main memory.

2.1. Hybrid MPI/OpenMP Approach

A common strategy to exploit the computational power provided by the many-core de-
vices is to use a hybrid approach, combining MPI and OpenMP (or a similar directive-
based language) for inter- and intra-node communication, respectively. This approach is
common in GPU clusters, where the inter-node communication is performed with MPI
and the actual computation is performed with CUDA or OpenCL on the local GPU(s) [8].

2.2. The PGAS Approach

An alternative to the MPI/OpenMP hybrid approach is to use a Partitioned Global Ad-
dress Space (PGAS) model, as implemented for example by coarray Fortran (CAF) [10,
11] and Unified Parallel C (UPC). The PGAS parallel programming model attempts to
combine the Single Program Multiple Data (SPMD) model commonly used in distributed
memory systems with the semantics of shared memory systems. In the PGAS model,
every process has its own memory address space but can expose a portion of its mem-
ory to other processes. At this time there are already publications [12,13] on the usage
of PGAS languages on Intel Xeon Phi (KNC architecture); even though the evidence is
not conclusive, it is our feeling that PGAS languages will play an important role for the
next generation of architectures. This is especially because, as already mentioned, on an
exascale machine equipped with billions of computing elements, the bulk-synchronous
execution model adopted in many current scientific codes will be inadequate.

3. Introduction to Coarrays

Coarray Fortran (also known as CAF) began as a syntactic extension of Fortran 95 pro-
posed in the early 1990s by Numrich and Reid [10]; it is now part of the Fortran 2008
standard (ISO/IEC 1539-1:2010) [11]. The main goal of coarrays is to allow language
users to create parallel programs without the burden of explicitly invoking communica-
tion functions or directives such as with MPI and OpenMP.

A program that uses coarrays is treated as if it were replicated at the start of exe-
cution; each replication is called an image. Images execute asynchronously and explicit
synchronization statements are used to maintain program correctness; a typical synchro-
nization statement is sync all, acting as a barrier for all images. Each image has an
integer image index varying between one and the number of images (inclusive); the run
time environment provides the this image() and num images() functions to identify
the executing image and the total number of them.

Variables can be declared as coarrays: they can be scalars or arrays, static or dy-
namic, and of intrinsic or derived type. All images can reference coarray variables located
on other images, thereby providing data communications; the Fortran standard further
provides other facilities such as locks, critical sections and atomic intrinsics.



3.1. GNU Fortran and LIBCAF

GNU Fortran (GFortran) is a free, efficient and widely used compiler; in 2012, GFor-
tran started supporting the coarray syntax but only provided single-image execution, i.e.,
no actual communication. The main design point was to delegate the communication
effort to an external library (LIBCAF) so that the compiler remains agnostic about the
actual transport layer employed in the communication. Therefore, GFortran translates
coarray operations into calls to an external library: OpenCoarrays. In [14] we presented
two OpenCoarrays LIBCAF implementations, one based on MPI and the other based on
GASNet [15]. Here we focus on LIBCAF MPI, which assumes an underlying MPI im-
plementation compliant with version 3.0. The following example shows how GFortran
uses LIBCAF MPI for a coarray allocation.

Coarray Fortran declaration of an array coarray with a dimension of 100 and an unspecified co dimension.

program a l l o c
i m p l i c i t none
i n t e g e r , dimension ( 1 0 0 ) : : x [∗ ]
! More code here

Actual GNU Fortran call to OpenCoarrays function (C code)

x = ( i n t e g e r ( k ind = 4 ) [ 1 0 0 ] ∗ r e s t r i c t ) g f o r t r a n c a f r e g i s t e r
( 4 0 0 , 0 , ( void ∗ ∗ ) &c a f t o k e n . 0 , 0B , 0B , 0 ) ;

Actual memory and window allocation inside LIBCAF MPI

M P I W i n a l l o c a t e ( a c t u a l s i z e , 1 , m p i i n f o s a m e s i z e ,
CAF COMM WORLD, &mem, ∗ t o k e n ) ;

In the example, the total amount of memory requested is 400 bytes (100 elements
of 4 bytes each). The local memory will be returned by the function and stored in-
side the x variable, whereas the variable used for remote memory access will be stored
in the caf token.0 variable. In the case of LIBCAF MPI, such token represents the
MPI Window used by the one-sided functions.

4. Hybrid Coarray Fortran

In this paper, we propose to merge the expressivity of coarray Fortran with the compu-
tational power of accelerators. As far as we know, this is the very first attempt to use
coarray Fortran with accelerators. The idea is to exploit the Unified Memory provided
by CUDA 6.0 to make a coarray variable accessible from either the CPU or the GPU
in a completely transparent way. The only changes required in OpenCoarrays are: (1)
to separate the MPI window allocation and creation, and (2) to synchronize the CUDA
device before using the memory. In MPI-2, the only way to create a window is to locally
allocate the memory (via malloc or MPI Alloc mem) and then use the MPI Win create

for the actual window creation, whereas with MPI-3 there is the option of a single
call to MPI Win allocate. Our approach is to allocate the local memory using the



cudaMallocManaged function in order to make that portion of memory “CUDA man-
ageable”, then call the cudaSyncDevice function, and finally create the window with
MPI Win create. This approach is easy and general to implement, although it is not
necessarily guaranteed to be the most efficient. A reasonable alternative would be ei-
ther to delegate all communications to a CUDA-aware MPI implementation or to use a
mapped memory approach, at the price of introducing a strong dependency on the quality
of the MPI implementation. However, in our preliminary tests we found that the man-
aged memory (Unified Memory) provided by CUDA 6.5 does not work too well with
RDMA protocols (provided for example on Cray machines); we are fairly confident that
such issue will be addressed in future CUDA implementations.

4.1. “ACCELERATED” Fortran Variables

With the approach introduced in the previous section, each coarray declared in the pro-
gram requires interfacing with CUDA. What we suggest is a new variable attribute we
call “accelerated”. The meaning of this keyword is to mark a Fortran variable as “spe-
cial”, with faster access than a regular variable and suitable for accelerated computations.

In our current implementation an “accelerated” variable is CUDA-accessible; note
that it is not necessarily also a coarray variable. The keyword is not meant to replace
openACC statements for CUDA allocations, it just suggests the compiler to treat the
variable differently than usual variables. We believe that such a keyword can play a sig-
nificant role in the next generation architectures, where each processor will be an accel-
erator itself. As explained in Sec. 1.1, the Intel Knights-Landing will expose two types
of memory: the first small and fast, the latter big and slow. Declaring a variable as “ac-
celerated” would suggest the compiler that it could reside in the faster memory; in this
case, the “accelerated” keyword assumes almost the same meaning as the “shared” key-
word on CUDA. To test these ideas, we modified GFortran by adding this new keyword
as an extension, currently affecting only allocatable variables. For coarray variables,
we modify the gfortran caf register by adding one more argument represent-
ing the accelerated attribute. For non-coarray variables, we force the allocation through
cudaMallocManaged using a new function called gfortran caf register nc im-
plemented in LIBCAF MPI.

5. Experimental Results

To show the benefits of hybrid coarrays, we analyze in this section the performance of
a matrix-matrix multiplication kernel based on the SUMMA algorithm [16]. We run the
tests on Eurora, a heterogeneous cluster provided by CINECA, equipped with Tesla K20
and Intel Xeon Eight-Core E5-2658. We used the pre-release GCC-6.0, with OpenCoar-
rays 0.9.0 and IntelMPI-5. This unusual combination is because IntelMPI is the best
MPI implementation provided on Eurora; however, OpenCoarrays can be linked with
any MPI-3 compliant implementation.

5.1. MPI/CUDA vs. Hybrid CAF

On a cluster of GPUs, the most commonly used approach consists of employing MPI for
the communication among GPUs, assuming that each process uses only one GPU, and



then calling the CUDA kernel on each process. This simple approach allows to use sev-
eral GPUs on the cluster but it may suffer from the synchronization imposed by the two-
sided functions (MPI Send, MPI Recv) provided by MPI. In order to invoke the CUDA
kernels from Fortran using GNU Fortran, we make extensive use of the C-interoperability
capabilities introduced in Fortran 2003. A typical example of C interoperability for the
dot product a ·b performed with CUDA is the following:

i n t e r f a c e
s u b r o u t i n e memory mapping ( a , b , a d , b d , n , img ) &

&bind (C , name=” memory mapping ” )
use i s o c b i n d i n g
r e a l ( c f l o a t ) : : a (∗ ) , b (∗ )
type ( c p t r ) : : a d , b d
i n t e g e r ( c i n t ) , v a l u e : : n
i n t e g e r ( c i n t ) , v a l u e : : img

end s u b r o u t i n e memory mapping
s u b r o u t i n e manual mapped cudaDot ( a , b , p a r t i a l d o t , n ) &

& bind (C , name=” manual mapped cudaDot ” )
use i s o c b i n d i n g , only : c f l o a t , c i n t , c p t r
type ( c p t r ) , v a l u e : : a , b
r e a l ( c f l o a t ) : : p a r t i a l d o t
i n t e g e r ( c i n t ) , v a l u e : : n

end s u b r o u t i n e
end i n t e r f a c e

The two subroutines are interfaces for the C functions called memory mapping and
manual mapped cudadot. The first is used to map the memory previously allocated
on the CPU for a and b onto the GPU; the function returns two C pointers called a d

and b d which represent pointers usable on the GPU. The latter is the wrapper for the
actual computational kernel. It takes as input arguments the GPU pointers returned by the
memory mapping function. NVIDIA claims that Unified Memory, besides reducing code
complexity, could also improve the performance by transferring data on demand between
CPU and GPU. There are already some studies [17] on Unified Memory performance,
that shows the advantages to be strongly problem-dependent.

5.2. SUMMA Algorithm

SUMMA stands for Scalable Universal Matrix Multiplication Algorithm and is currently
used in ScaLAPACK. The SUMMA algorithm is particularly suitable for PGAS lan-
guages because of the one-sided nature of the involved transfers.

Listing 1: Usual matrix product

do i =1 , n1
do j =1 , n2

do k =1 , n3
C( i , j ) = C( i , j ) &

+ A( i , k )∗B( k , j )
end do

end do
end do

Listing 2: SUMMA approach

do k =1 , n3
do i =1 , n1

do j =1 , n2
C( i , j ) = C( i , j ) &

+ A( i , k )∗B( k , j )
end do

end do
end do



Listings 1 and 2 allow to compare the pseudo-code for the usual matrix product to
that of the SUMMA algorithm when we wan to multiply matrices A and B, resulting
in matrix C. SUMMA performs n partial outer products (column vector by row vector).
This formulation allows to parallelize the two innermost loops on i and j. Using MPI
two-sided, each process has to post a send/receive in order to exchange the data needed
for the computation; with coarrays, because of the one-sided semantics, each image can
take the data without interfering with the remote image flow.
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Figure 3. Performance of SUMMA: MPI-based vs. coarray Fortran implementations on Eurora cluster

Figure 3 compares the performance achieved by the coarray Fortran and MPI based
implementations of the SUMMA algorithm. The chart shows the mean execution time
on 10 runs using a matrix of size 4096x4096. We also report the performance of LIB-
CAF MPI with the CUDA support based on CUDA mapped memory as well as on Uni-
fied Memory, labeled with CAF PIN and CAF UM respectively. We observe that the
performance achieved with Unified Memory is equal or worse than that achieved with
the usual pinned memory, as already noted in [17].

6. Conclusions

In this paper, we show how PGAS languages, and in particular coarray Fortran, can
provide significant speedup in a hybrid CPU+Accelerator context. We show that using
coarray Fortran, besides simplifying the code, improves the performance because of the
one-sided semantic which characterizes PGAS languages. We also propose a new vari-
able attribute called “accelerated” for the Fortran language. Such attribute instructs the
compiler to treat the variable as suitable for acceleration. Based on what we currently
know about future architectures, we think that such keyword can play a significant role
in the post-petascale era, where heterogeneous code will be a must for exploiting all the
computational power provided by complex and energy efficient architectures.
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