
OpenCoarrays: A Coarray
Fortran API and ABI

A. Fanfarillo, S. Filippone
D. Nagle, D. Rouson

fanfarillo@ing.uniroma2.it, salvatore.filippone@cranfield.ac.uk
dnagle@ucar.edu, damian@sourceryinstitute.org

• Coarray Fortran (CAF) is a collection of features in the Fortran 2008 stan-
dard with expanded support in Fortran 2015 .

• CAF enables programmers to express parallel algorithms without tying
an algorithm’s implementation to a specific, lower level communication
library (e.g., MPI) or set of directives (e.g., OpenMP).

• A CAF executable launches one or more images (replicas of itself) in a
Single Program Multiple Data (SPMD) fashion.

• Each image manages its own portion of what is logically a Partitioned
Global Address Space (PGAS).

• The language rules facilitate one-sided communication: one image may
access a second image’s coarray without the second image’s involvement.

• A coarray may be a scalar or an array in statically or dynamically allo-
cated memory and may be of intrinsic or derived type.

Fortran is now a PGAS language that facilitates SPMD parallel pro-
gramming without direct reference to anything outside the language!

What is coarray Fortran? Why use it?

real, dimension(10), codimension[*] :: x, y
integer :: num_img, me
num_img = num_images()
me = this_image()
x(2) = x(3)[7] ! get value from image 7
x(6)[4] = x(1) ! put value on image 4
x(:)[2] = y(:) ! put array on image 2
sync all
x(1:10:2) = y(1:10:2)[4] ! strided get from image 4

The Cray and Intel compilers support Fortran 2008 CAF. GCC 5.1 or
later use OpenCoarrays to support most Fortran 2008 CAF.

Fortran 2008 CAF at work

Every transfer is per-
formed using the regu-
lar Fortran array syn-
tax. The basic transfer
coarray operations are
Put, Get, Strided Put and
Strided Get. Synchro-
nization primitives are
required to maintain pro-
gram correctness.

Every transfer is per-
formed using the regu-
lar Fortran array syn-
tax. The basic transfer
coarray operations are
Put, Get, Strided Put and
Strided Get. Synchro-
nization primitives are
required to maintain pro-
gram correctness.

• Fortran 2015 adds collective subroutines for efficient global communica-
tion and computation: co_sum, co_min, co_max, and co_broadcast perform
global summation, minimum, and maximum reductions, and broadcasts.

• The co_reduce collective subroutine allows users to extend the set of
collective subroutines by writing a user-defined, functionally pure, binary
operator for use in a global reduction.

integer :: me,i
me=this_image()
sync all
call co_sum(me,result_image=1)
if (this_image() == 1 .and. me /= sum([(i,i=1,num_images())]) error stop
print *,"image ",this_image()," received the correct tally "

To compare the performance of the intrinsic collectives to analogous,
reasonably sophisticated collective subroutines that were manually
coded using only Fortran 2008 features.

Goal

Fortran 2015 Collective Subroutines

Error termi-
nation halts
all images.

Error termi-
nation halts
all images.

• With an OpenCoarrays-aware compiler, such as GCC 5.1 or later, Open-
Coarrays functions as an application binary interface (ABI) that the com-
piler calls for parallel communication, computation and synchronization.

• OpenCoarrays also provides an application programmer interface (API)
that providses users access to CAF features even with non-CAF compilers.

• OpenCoarrays provides a compiler wrapper (“caf”) that can translate the
image number tally program at the lower left into a program with API
calls that non-CAF compilers can process.

Users of GCC 4.9 can compile some CAF codes via the “caf” wrapper,
which will eventually support non-GCC compilers as well.

OpenCoarrays API and ABI

 10

 100

 1000

 10000

16 32 64 128 256 512 1024

T
im

e
(u

se
c)

Cores

coarray_sum_i32
coarray_sum_r64

co_sum_binary_i32
co_sum_binary_r64

co_sum_rec_i32
co_sum_rec_r64

co_sum_alpha_i32
co_sum_alpha_r64

 10

 100

 1000

16 32 64 128 256 512 1024

T
im

e
(u

se
c)

Cores

coarray_brd_i32
coarray_brd_r64

co_brd_binary_tree_i32
co_brd_binary_tree_r64

co_brd_bin_tree_i32
co_brd_bin_tree_r64

Execution times for sum reductions (top) and broadcasts (bottom). From top to bottom in the legend:
intrinsics (red and green), binary tree, recursive doubling (binomial tree), and alpha tree (alpha=0.4).

Platform: NERSC Hopper Cray XE6, peak performance of 1.28 Petaflops/sec, 153,216 compute cores, 212
Terabytes of memory, and 2 Petabytes of disk.

Intrinsic vs. User-Defined Collectives

Fortran 2008 CAF features adds a PGAS capability to the language PGAS facilitates
SPMD-style programming within the language. Fortran 2015 adds intrinsic collective
subroutines that greatly outperform even reasonably sophisticated collectives that a user
might write in Fortran 2008. The OpenCoarrays compiler wrapper translates a subset
of CAF features into calls to the OpenCoarrays API for users of non-CAF compilers.Such
users invoke the intrinsic collective subroutines through C bindings in the API, whereas
OpenCoarrays-aware CAF compilers directly invoke the OpenCoarrays ABI.

Summary and Conclusions

