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Abstract—In order to reach challenging performance goals,
computer architectures will change significantly in the next
future. Heterogeneous chips, equipped with different types of
cores and memory will compel application developers to deal
with irregular communication patterns, high parallelism, and
unexpected behaviors. Load balancing among the heterogeneous
compute units will be a critical task in order to exploit all the
computational power provided by such new architectures. In
this highly dynamic scenario, Partitioned Global Address Space
(PGAS) languages, like Coarray Fortran (CAF), appear to be a
promising alternative to standard MPI programming using two-
sided communications, in particular because of their one-sided
semantic. In this work, we show how Coarray Fortran can be
used for implementing dynamic load balancing algorithms on an
exascale compute node and how these algorithms can produce
performance benefits for an Asian option pricing problem,
running in symmetric mode on Intel Xeon Phi (KNC).

I. INTRODUCTION

Solving scientific problems using multi- and many-core
devices at the same time, possibly doing different types of
computation, will be highly rewarded in the exascale era,
where each compute node will be equipped with specialized
and heterogeneous hardware.

In 1974 Dennard et al. [1] formulated a scaling law (related
to MOSFETs) saying that as transistors get smaller their
power density stays constant, so that the power use stays in
proportion with the area. Since around 2005/2007, Dennard
scaling appears to have broken down. The primary reason
cited for the breakdown is that at small sizes, current leakage
poses greater challenges, and also causes the chip to heat up,
which creates a threat of thermal runaway and therefore further
increases energy costs. The failure of Dennard’s law and the
validity of Moore’s law will make impossible to power-on all
the transistors simultaneously at the nominal voltage, while
keeping the chip temperature in the safe operating range.
When a lot of transistors are easily available (almost for free
compared to the cost of energy) but power is very limited,
circuit specialization may be the solution. As explained in [2],
transistors can be “spent” in order to “buy” power efficiency.
For example, a circuit might have many different special-
purpose cores that perform one task very efficiently but are
dark the rest of the time. In conclusion, in the next future
energy constraints will lead to highly heterogeneous proces-
sors, equipped with several specialized circuits. Furthermore,
energy will not only impact on computation but also (and

particularly) on communication, both within and among nodes.
Indeed, the energy required for off-chip communication will
be much higher than that required for mere computation.

In this scenario, load balancing strategies, at different levels,
will be critical to obtain an effective usage of the heteroge-
neous hardware and to reduce the impact of communication
on energy and performance. Implementing efficient dynamic
load balancing algorithms, able to manage heterogeneous
hardware, can be a challenging task, especially when a parallel
programming model for distributed memory architecture, like
message passing, is required. The message passing program-
ming model has been shown to be effective in several problems
in High Performance Computing, in particular with homo-
geneous and regular applications, where the time required
by communication and computation phases can be accurately
estimated and perturbations are unlikely and with minimal
impact. Heterogeneity and task-based parallelism introduce a
much more dynamic and unpredictable environment, which
requires an alternative approach to the common and widely
adopted message passing model.

The easiness of programming and asynchronous semantic
provided by Partitioned Global Address Space (PGAS) lan-
guages, like Coarray Fortran [3], UPC [4] and Chapel [5], can
be effectively used on heterogeneous hardware and/or when
complex parallel algorithms must be implemented efficiently.

In this work, we focus on load balancing a simple Monte
Carlo simulation for computing Asian option price. Thanks
to its simple implementation and parallelization, this problem
allows us to show pretty well the effects of load balancing
when applied to heterogeneous compute units. The basic ideas
and part of the underlying code, related to the Asian options
pricing problem and optimized for Intel Xeon and Xeon
Phi architectures, have been taken from [6] with the kind
permission from the authors.

Specifically, we show how a PGAS-based approach can be
truly effective for implementing a dynamic load balancing
algorithm, with the ability to manage heterogeneous compute
units. In order to simulate an exascale node equipped with
heterogeneous components, we run all our tests on a single
compute node equipped with 2 CPUs and 2 Intel Xeon Phi
KNC in symmetric mode. This mode of operation supported by
Intel Xeon Phi allows us to run the same parallel application
on both components (i.e., CPUs and Intel Xeon Phis) as a



regular MPI application.
We also show that running different versions of the same

application, at the same time, on the right compute units, can
make a difference in terms of performance.

As far as we know, this is the very first attempt of running
a parallel application, based on coarray Fortran, on CPUs
and Intel Xeon Phis in symmetric mode using dynamic load
balancing strategies. In [7], Lua et al. discuss the intra-node
memory access problems and host-to-MIC connection issues
for running UPC [4] applications on a MIC system under na-
tive and symmetric programming modes. They find out several
significant problems that affect UPC when running on many-
core systems like MIC, such as the communication bottleneck
between MIC and host, unbalanced physical memory, and
computation power issues. They conclude that adopting a load
balancing strategy among MICs and CPUs can be a relevant
optimization for applications running in symmetric mode.

The rest of this paper is organized as following. Section II
describes the Asian option pricing problem and presents two
possible parallel implementations. In Section III we provide
some background on PGAS and coarrays. In Section IV we
present the implementation of the dynamic load balancing
algorithms based on MPI and coarrays. We also highlight the
problems we encountered during the analysis and related to
MPI message progress. In Section V we describe the platform
used for the experimental results. In Section VI we present
some considerations on the parallel task scheduling problem
that the Asian option pricing embodies. In Section VII we
discuss the experimental results, using CPUs and Xeon Phis
in different ways in order to exploit as much heterogeneity
as possible. Finally, we present our conclusions and outline
future work in Section VIII.

II. ASIAN OPTION PRICING

An option is a contract between a buyer and a seller which
allows one party to buy or to sell, on a future date, an
asset from/to another party at a “strike price” agreed upon
signature of the contract. The Asian options are a particular
class of options in which the option payoff is calculated based
on the mean price of the asset, sampled over a prespecified
period of time [8]. This strategy reduces the risk associated
with market volatility and short-term market manipulation. To
make a profit, the seller of the option must set a price that
offsets the anticipated risks associated with the asset price
fluctuations. Asian options are commonly traded on currencies
and commodity products which have low trading volumes.

Since there are no known closed form analytical solutions
for pricing the Asian options, a variety of techniques have been
developed to study this problem, resulting in a vast amount of
related works. Popular techniques include Monte Carlo simula-
tion, numerical inversion of the Laplace transform of the Asian
option price as in [9], numerical partial differential equation
(PDE) techniques such as in [10], and various approximations
such as those proposed by Turnbull et al. [11].

Using Monte Carlo simulation, multiple stochastic histories
of the asset price are simulated based on the available in-

formation of the asset volatility [8], [12], [13]. Each Monte
Carlo simulation is independent from the others and does not
require intensive data transfers; therefore, this method can be
categorized as embarrassingly parallel.

Suppose the task is to price N options, where for each
option we have different sets of parameters. For each option,
we will simulate P random paths and perform statistical
analysis using these simulations. Adopting a parallel hybrid
approach based on MPI+OpenMP, organized according to the
usual master-worker paradigm, there are two different ways to
proceed:

1) compute T options in parallel on each process using
OpenMP, each of which will run P simulations;

2) compute one option at a time on each process, running
P simulations in parallel with OpenMP.

From now on, we will refer to the first approach as MO (multi-
option) and to the latter as MT (multi-threaded). In Figures 1
and 2 we provide a graphical description of the MO and MT
approaches, respectively.

Note how, for the MT approach, increasing the number of
options on the device does not change the utilization of the
internal compute units.

Fig. 1. T options running on T OpenMP threads (MO approach)

Fig. 2. P simulations of a single option running on P OpenMP threads (MT
approach)



III. PGAS AND OPENCOARRAYS

Partitioned Global Address Space (PGAS) model is a paral-
lel programming model that assumes a global memory address
space logically partitioned, with a portion of the memory being
assigned to a specific processor. The model attempts to com-
bine (and get the best from) the Single Program Multiple Data
(SPMD) approach, used in the distributed memory systems,
and the semantic of the shared memory systems. In the PGAS
model, every process has its own memory address space but
it can share a portion of its memory with other processes.

The most common PGAS languages include Coarray For-
tran (CAF) [3], [14], Unified Parallel C (UPC) [4] and
Chapel [5]. PGAS languages rely on one-sided communication
semantics: a process can get/put data from/on a memory
segment exposed by another remote process, without explicitly
involving the application on the remote node. Several modern
networks allow to implement these semantics with Remote
Direct Memory Access (RDMA), where the network interface
directly takes care of the data transfer, without involving the
remote CPU. There are several cases when a PGAS approach
can easily solve difficult message passing situations because
of the one-sided semantic. In general, whenever the com-
munication is irregular and/or there is space for overlapping
communication with computation, PGAS languages can show
significant performance improvement. In this paper, we show
how a PGAS language like Coarray Fortran can be effectively
used for implementing dynamic load balancing algorithms
which are suitable for heterogeneous platforms.

Coarray Fortran (also known as CAF) is a syntactic ex-
tension of Fortran 95/2003 which was proposed in the early
1990s by Robert Numrich and John Reid [3] and is now part
of the Fortran 2008 standard (ISO/IEC 1539-1:2010) [14].
The main goal of coarrays is to allow Fortran users to create
parallel programs without the burden of explicitly invoking
communication functions or directives such as with MPI and
OpenMP.

A program that uses coarrays is treated as if it were
replicated at the start of execution, each replication is called
an image. Each image executes asynchronously and explicit
synchronization statements are used to maintain program
correctness. A typical synchronization function is sync all; it
can be intended as a barrier for all images. A piece of code
contained between synchronization points is called segment
and a compiler is free to apply all its optimizations inside
a segment. An image has an image index, that is a number
between one and the number of images (inclusive). In order
to identify a specific image at run time or the total number of
images, the this_image() and num_images() functions
are provided. A coarray can be a scalar or array, static or
dynamic, and of intrinsic or derived type. The coarray defi-
nition included in Fortran 2008, as standardized by ISO/IEC
1539-1:2010, defines a simple syntax for accessing data on
remote images, synchronization statements and collective al-
location and deallocation of memory on all images. Although
these features allow one to write a totally functional coarray

program, they do not allow to express more complex and
useful mechanisms for synchronization, images organization
and failure management. Technical Specification 18508 (TS
18508) [15], which will be included in the Fortran 2015
standard, proposes the following extensions to the coarray
facilities defined in Fortran 2008: 1) teams; 2) failed images; 3)
events; 4) new intrinsic procedures (collectives and atomics).

Teams allow to group images into non-overlapping teams in
order to execute different parts of the same application inde-
pendently. Failed images provide a mechanism to identify what
images have failed during the execution of a program. Events
provide a fine grain ordering of execution segments based on
a limited implementation of the well known semaphore prim-
itives. New collectives and atomic intrinsics provide intrinsic
procedures for commonly used collective and atomic memory
operations (e.g. ATOMIC FETCH ADD). Such procedures
can be highly optimized for the target computational system,
providing significantly improved program performance.

Since the inclusion of coarrays in the Fortran standard,
the number of compilers implementing them has increased:
besides the Cray Fortran compiler, the Intel ifort, GNU For-
tran, Rice compiler, OpenUH compiler, and the g95 compiler
support coarrays. OpenCoarrays [16] is an open-source trans-
port layer supporting Coarray Fortran compilers. Such library
is currently the communication library used by the GNU
Fortran compiler; it provides several implementations based
on different communication layers, with the most complete
and stable version being that based on MPI-3.0. OpenCoar-
rays already supports several coarray features listed in TS
18508 [15], including Events and the new atomic intrinsics
like ATOMIC FETCH ADD.

Even though a user might want to directly use the MPI
one-sided functions, there are several issues related with this
approach: i) the syntax of the one-sided functions is much
more complex and error-prone than coarray’s; ii) using MPI
explicitly, the code is strictly tight to a specific parallel
programming system; using Coarrays, the syntax stays the
same whereas the transport layer can transparently change. For
example, it is possible to replace the MPI-based implementa-
tion of OpenCoarrays with the GASNet-based implementation
without changing a line in the source code.

A. OpenCoarrays Compiler Wrapper

Currently, OpenCoarrays1 comprises three components: 1)
run-time library; 2) executable file launcher; 3) compiler
wrapper.

The run-time library supports compiler communication and
synchronization requests by invoking a lower-level communi-
cation library (MPI by default). It exposes an Application Bi-
nary Interface (ABI) that translates high-level communication
and synchronization requests into low-level calls. The ABI is
usually invoked directly by OpenCoarrays-aware compilers.

The file launcher simply passes execution to the chosen
communication library’s parallel program launcher (mpirun

1www.opencoarrays.org



by default). The only aim of the launcher is to mask the
communication layer used by the run-time library.

The compiler wrapper aims to support CAF even on com-
pilers that provide limited or no support for CAF. To do so,
the compiler wrapper checks if the actual compiler supports
OpenCoarrays (currently only GCC 5 and above), in this
case it simply passes the source code to the actual compiler
without any modification. Otherwise, the wrapper transforms
the coarray syntax into invocations to specific procedures im-
plemented in a Fortran 2008 module (opencoarrays module).
These procedures adapt the arguments coming from the source
code and invoke the run-time library using the OpenCoarrays
ABI.

Using the structures and procedures declared in the Open-
Coarrays module, any Fortran 2008 compiler is able to use the
OpenCoarrays run-time library. Currently, the OpenCoarrays
module supports only a subset of CAF (collectives, basic
synchronization statements and intrinsics); for the purpose of
this work, we added the ATOMIC FETCH ADD procedure to
the OpenCoarrays module.

IV. LOAD BALANCING ON HETEROGENEOUS NODES

Load balancing on heterogeneous nodes is a critical task
in order to get high performance. The hardware heterogene-
ity makes it difficult to ensure reasonably uniform resource
utilization, thus leading to performance losses due to load
imbalance [17].

The Asian option pricing problem we described in Section II
is a very good candidate for showing the effects of good load
balancing between CPUs and Xeon Phis. Since the options
are independent with each other (embarrassingly parallel), the
performance of the whole parallel application depends only
on the efficiency and implementation of the load balancing
algorithm.

Static load balancing can lead to very high performance only
after several benchmark runs; these are needed to determine
the correct ratio between CPU and Xeon Phi.

A dynamic load balancing approach relieves the users from
performing such a preliminary tuning and allows them to
manage unexpected performance perturbations in a transparent
way. This flexibility comes with the price of an increased
implementation and communication cost and raises some ques-
tions about dynamic workload scheduling. In this section we
review how to realize a dynamic load balancing strategy based
on the traditional MPI two-sided routines and then we focus
on the exploitation of a CAF-based solution. The latter seems
to be a valid alternative to MPI thanks to its light weight one-
sided communication model and low overhead synchronization
semantics.

A. Dynamic Workload Scheduling based on MPI

The most performaning version of dynamic workload
scheduling presented in [6] is based on a MT approach. One
thread of processor 0 is dedicated to communication purposes,
whereas the others are used for computation only. The com-
munication thread keeps invoking a blocking MPI Recv, in

order to get messages from unspecified sources. As soon as a
message arrives, the thread increments by one the option index
variable (which represents an option) and sends the old index
to the origin process (which is waiting for a reply). The master
sends only one option for each request, then each process will
use several threads to parallelize the compute intensive part of
the Monte Carlo simulation.

B. Dynamic Workload Scheduling based on CAF

Coarray Fortran allows to directly access the memory ex-
posed by other processes through get or put operations with-
out explicitly involving the target process. This asymmetric
paradigm can be used very effectively in those cases where
processes cannot predict if and when a message will arrive.

Besides usual synchronization mechanisms (full and partial
barriers) and one-sided transfer subroutines, Coarray For-
tran provides a set of atomic operations. Among them, the
ATOMIC FETCH ADD function allows to perform an atomic
fetch of the data from a remote memory segment and to
update the remote value, by summing a new constant number.
This intrinsic completely replaces the spinning communication
thread adopted by the dynamic workload scheduling based on
MPI we have described in Section IV-A.

Unfortunately, the CAF implementation provided by the
Intel compiler, which is required to run on Intel Xeon Phi, does
not provide atomic operations like ATOMIC FETCH ADD. In
order to face this issue, we implemented a wrapper module
that makes the OpenCoarrays library [16] usable by any
Fortran compiler. Since all communication functions of the
OpenCoarrays library are based on MPI-3.0, we are able to
compile it for both CPU and Intel Xeon Phi with the Intel
Compiler and use it through the wrapper module.

C. MPI Passive One-sided Progress

The direct access to remote memory (RMA), implemented
through the one-sided functions exposed by MPI-3.0, is sup-
posed to provide better performance than the usual two-sided
approach by overlapping communication and computation.
Theoretically, the program running on the remote process
does not need to call any routine to match the one-sided
operations invoked by the source process. In practice, the
matching between MPI features and the underlying network
capabilities is not perfect and, even if the NIC allows to over-
lap communication with computation, the MPI implementation
may not be able to progress independently [18].

We will now give a more detailed definition and description
of Progress and Overlap, and of their impact on the perfor-
mance of MPI applications; this section is based on [19].

Overlap is a characteristic of the network layer; it consists of
the NIC capability to take care of the data transfer(s) without
the direct involvement of the host processor, thus allowing the
CPU to be dedicated to computation.

Progress is a characteristic related to MPI, which in the soft-
ware stack resides above the network layer. The MPI standard
defines a Progress Rule for asynchronous communication op-
erations; unfortunately, there are two different interpretations



of this rule leading to different behaviors, both compliant with
the standard.

The stricter interpretation of the Progress Rule is that, once
a non-blocking communication operation has been posted,
the subsequent posting of a matching operation will allow
the original one to make progress, regardless of whether
the application makes any further library call. In short, this
interpretation mandates non-local progress semantics for all
non-blocking communication operations once they have been
enabled.

The weaker interpretation allows a compliant implementa-
tion to require the application to make further library calls
in order to achieve progress on other pending communication
operations.

In general, it is possible to support overlap without support-
ing independent MPI progress. For example, an InfiniBand
network subsystem can usually perform RDMA operations,
thus fully overlapping communication and computation; the
price to be paid is that the target memory address has to be
known. If the transfer to/from the target address depends on
the user application making an MPI library call, then progress
is not independent from the computation. Conversely, it is also
possible to have independent MPI progress without overlap.

Asynchronous message progress is a very intricate and
controversial topic in high-performance computing [19], [20],
[21]. With the current available high-performance networks,
there are essentially three strategies for making progress:
manual progress, thread-based progress, and communication
offload.

Hoefler et al. [21] describe all three strategies and analyze
the thread-based approach. They conclude that the thread-
based progress, using polling (by-passing the operating sys-
tem), is beneficial only when separate computation cores are
available for the progression thread. Using an interrupt-based
approach (passing through the operating system) might be
helpful in the case of oversubscribed nodes (the progress and
user threads share the same core). However, passing through
the operating system raises two concerns: 1) it is unclear how
large the interrupt latency and overheads are on a modern
system; 2) the scheduler has to schedule the progress thread
right after the interrupts to achieve asynchronous progress.
This latter issue can be tackled by using real-time functional-
ities in the Linux kernel.

In [22], Si et al. propose to use dedicated communica-
tion processes (called ghost processes) for ensuring message
progress, and employ the MPI-3 shared memory capability for
transferring data from the ghost process to the target process.

In this work, we analyze the performance of both ap-
proaches; as shown in Figure 11, the performances provided
by the different progress strategies are closely related to the
network fabric.

The overhead imposed by manual and thread-based progress
turns into a performance penalty on the one-sided functions.
Furthermore, the atomic operations have a variable cost, based
on the contention on the variable to be updated. A direct
translation of the MPI-based (where the master sends only

one option per request) version into the CAF-based version,
even when manual progress is implemented, does not provide
good results because of the higher communication cost. To
overcome this problem, the idea is to send more than one
option per request to the workers; this simple solution can be
very effective, but introduces several other problems discussed
below.

V. EXPERIMENTAL PLATFORM

Each reported test has been run on Galileo, a Tier-1 system
operated by CINECA, the Italian supercomputing consortium.
Each compute node is equipped with two 8-core Intel Haswell
processors E5-2630 v3 at 2.40 GHz. About half of the avail-
able compute nodes also host dual Intel Xeon Phi 7120p. Each
Xeon Phi has 61 cores at 1.1 GHz able to handle up to 4
threads and 8GB of RAM.

The application code for the Asian options pricing based
on the Monte Carlo method has been compiled using the
Intel Fortran Compiler 15.0.2 and IntelMPI-5.0.2 and linked
with OpenCoarrays-1.0.0, compiled for IntelMIC and regular
CPU, using a wrapper module for invoking the OpenCoarrays
functions.

For the purposes of this work, we consider only one
compute node and use the two CPUs and Xeon Phis together
in symmetric mode. Figure 3 shows such configuration; note
that communication through the Intel QuickPath Interconnect
(QPI) will provide lower latency than communication on PCI
Express.

Fig. 3. Heterogeneous Galileo’s single node

VI. IMPLEMENTING CAF-BASED DYNAMIC SCHEDULING

Because the ATOMIC FETCH ADD intrinsic provided by
Coarray Fortran allows to sum any constant number to the
remote variable, a good idea for reducing the amount of
transfers is to get more than one option per request. This idea
carries with it a very simple but important question: what is
the right number of options to use on each device? Fortunately,
this is a well known issue addressed since the beginning of



the past century, where scheduling problems were related to
manufacturing industry.

Before answering the question on the right number of
options per device, we need to analyze performance and con-
sequences of the two possible solutions described in Section II,
that is multiple options per process (MO) and multi-threading
on single option (MT). In both cases, we want to complete as
soon as possible the pricing for all the options (the number
of total options is fixed). This also means that we want to
maximize the throughput expressed as the number of random
simulations per second.

All the tests shown in the next subsections have been run
on a single node of the platform described in Section V.

A. Multiple Options per Process (MO)

In the first case, T options are run in parallel, on each
process, using OpenMP. Each thread will run P simulations
(related to only one option), using as much as possible
the AVX-2 and IMCI vector instructions, installed on Intel
Haswell and Intel Xeon Phi Knights Corner, respectively.
From a scheduling point of view, CPUs and Xeon Phis can
be seen as parallel machines, parametrized by the number of
cores.

In this scenario, the throughput of each device will increase
as the number of assigned options increases until the device
reaches its capacity. Figures 4 and 5 show the throughput while
varying the number of options assigned to CPU and Intel Xeon
Phi, respectively.
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Fig. 4. CPU throughput

Each curve in Figures 4 and 5 is labeled with the cor-
responding number of threads used in the computation. In
particular, since each compute node has 2 CPUs with 8 cores
each, in Figure 4 we report the throughput using only one core
(8 threads) and using both cores (16 threads).

It is clear that the maximum throughput is reached when the
number of options is equal to the number of cores (threads)
available on the device.

B. Multi-threading on Single Option (MT)

In this case, only one option is assigned to each process
and P Monte Carlo simulations are run in parallel using
OpenMP; within each simulation, vectorization is used as
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much as possible. From a scheduling point of view, CPUs
and Xeon Phis can be seen as single machines with different
service times. In other words, all the cores inside each device
are already running at their maximum. Assigning more options
to each device represents a queue of tasks that does not impact
on the throughput.

C. Analysis of the Two Approaches

Minimizing the time needed to compute for all the options,
using a heterogeneous node equipped with four devices (2
multi-core CPUs and 2 many-core Intel Xeon Phis), can be
seen as a makespan minimization problem without preemption.

The makespan represents the length of the schedule or,
more precisely, the time when the last job leaves the system.
Minimal makespan usually represents very good load balance.

From scheduling theory, finding a deterministic schedule
that minimizes the makespan on 2 identical parallel machines,
with jobs having different processing time, is an NP-hard in
the ordinary sense problem. In our case, heterogeneity adds
a further level of complexity and can be seen as a direct
generalization of the homogenous problem.

As a first step towards the creation of an effective heuristic,
we notice that the heterogeneous problem can be easily
transformed into a homogeneous problem. The idea is to find
the ratio of work to submit to CPU and Xeon Phi such that
both devices end the computation at the same time.

This rule transforms the parallel problem from heteroge-
neous to homogenous but does not tell us anything about the
exact quantity of work to give to each device.

At the beginning of this section, we mentioned that mini-
mizing the makespan also means that the throughput as to be
maximized. This means that the amount of work to be given to
the heterogeneous devices, respecting the ratio, has to ensure
maximum throughput on all devices.

Let us now consider the new homogeneous problem where
all the devices work at maximum throughput and with the
right ratio of options. This problem can be now addressed by
applying the usual heuristics suitable for Pm|Cmax problems
(find a schedule such that the makespan is minimized while
running jobs on m homogeneous parallel machines).



One of the most famous heuristics is the Longest Processing
Time first (LPT) [23]. The idea is to place the shorter jobs
towards the end of the schedule, where they can be used for
balancing the load. In our case, this heuristic suggests to keep
the amount of work on each device as small as possible, in
order to keep all the devices less idle as possible.

As a last consideration, we need to reduce the communi-
cation costs as much as possible by sending more than one
option at time to each device.

Summarizing:
1) All the devices should take the same amount of time

between two consecutive communications in order to
simulate homogeneity.

2) All the devices should work as close as possible to their
maximum throughput.

3) The amount of work to be given to each device should
to be as small as possible towards the end of the entire
computation.

4) Communications with the master process should be
reduced as much as possible.

For MO, respecting condition #2 means to send 240 options
to each Xeon Phi and 8 options to each CPU, but this conflicts
with rule #1. Furthermore, keeping the amount of data so high
on each device also conflicts with rule #3; in fact, reducing the
amount of work close to the end of computation means that
each device does not work at maximum throughput anymore.
Viceversa, keeping the amount of computation at the maximum
will likely leave some devices without enough work to do.

On the other hand, for the MT approach, even with a single
option, condition #2 is always respected and condition #1 can
be easily addressed. The only two conditions that interfere
with each other are #3 and #4.

Reducing the number of communications means increasing
the amount of work to give to each process; on the other hand,
this increases the risk of having idle devices towards the end
of the scheduling.

Figures 6 and 7 show the final part of an instance of
scheduling for the MO and MT approaches, respectively.

Fig. 6. Instance of scheduling for MO

As we said, for MO we cannot give to the devices less
options than the number that ensures the maximum through-

Fig. 7. Instance of scheduling for MT

put; in our case, 240 for the Xeon Phis and 8 for the CPUs.
Such restriction will most likely produce a situation like that
depicted in Figure 6, where one or more devices will not
be able to get enough options and they will spend all the
remaining time in idle state.

On the other hand, for the MT approach, we are guaranteed
to get the maximum throughput even with only one option per
device. This allows us to simulate homogeneity by adjusting
the number of options to assign to each device. In Figure 7 we
have chosen to give 2 options to the CPUs and 4 options to the
Xeon Phi. As we will show in Section VII-B, this configuration
leads to good performance on our platform.

Figure 9 shows the maximum performance achievable for
each single device, running the MT and MO implementations.
Note how the latter (MO in the chart) has better performance
than the former (MT).

D. Hybrid Approach

A good idea is to mix these two versions together and
exploit as much as possible the characteristics of the available
heterogeneous hardware. Because a CPU running the MO
version provides higher performance than its MT counterpart,
we decided to run the MO code, using eight options, only on
one CPU (i.e., CPU1 which is the “furthest” from the master)
and run the MT version on the other devices, balancing the
load accordingly. An instance of scheduling related to this
configuration is depicted in Figure 8. From now on, we will
refer to this hybrid version as MTH.

VII. EXPERIMENTAL RESULTS

We first analyze the performance of MT and MO on in-
dividual devices (without inter-process communication) using
all the cores available on each device. Then, we focus on
the trade-off between the amount of work and the scheduling
granularity for the MT version. Finally, in Sections VII-C
and VII-D we present a performance comparison between the
MPI and CAF-based MT implementations with the hybrid
implementation. We also show the behavior of manual and
thread-based progress using different network fabrics.



Fig. 8. Instance of scheduling for MTH

A. Performance on Single Device

Our first test examines the application performance using
only a single device, without inter-process communication
(i.e., without the master-worker approach). In other words,
only one process, running only on CPU or Xeon Phi, executes
the whole amount of options. This provides an estimate
of the maximum performance on each device, for a given
implementation. Figure 9 shows the maximum performance
achievable on CPU, Intel Xeon Phi, and the theoretical cumu-
lative throughput running on a node with 2 CPUs and 2 Xeon
Phi. Each CPU runs 8 threads, whereas each Xeon Phi runs
240 threads.
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Fig. 9. Homogenous performance on CPU, Xeon Phi and theoretical hetero-
geneous throughput

The test shows that a single Intel MIC is about twice as fast
than a CPU; therefore, to simulate homogeneity the options
provided to the Intel MIC should be twice as many as the
options provided to the CPU.

Furthermore, the MO implementation (when working with
as many options as cores available on the device) gives higher
performance than MT. On a single CPU, the MT version
achieves 1.56 billions of random values per second whereas
the MO achieves 2.0 billions of random values per second
while working on eight options in parallel.

B. Communication/Job Size Trade-off

We now analyze how the number of options assigned to
each device affects the performance of the CAF-based version
of MT. As explained in Section VI-C, when a dynamic load
balancing approach is used, the application performance is
influenced by two factors: 1) communication costs needed for
transferring data; 2) idle time spent by devices without enough
work to do. These two factors are inversely related and both
directly influenced by the job size. In fact, if we increase the
number of options to send to a device, the communication
costs will be lower (a single big transfers costs less than several
small transfers, in terms of latency and bandwidth). On the
other hand, multiple options assigned in one shot to a single
device (job) negatively influences the scheduling granularity.
In fact, close to the end of the execution, some devices will be
unable to get enough options because they have been already
taken in a previous job by other devices.

In Figure 10 we compare the effect of idle time with
the communication time (after normalizing both quantities
in the range between 0 and 1). From the graph it is clear
that we should assign no more than 3 options per CPU (and
consequently no more than 6 options per MIC).
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Fig. 10. Trade-off between communication and idle time

We observe that the costs in terms of idle time and com-
munication is roughly the same for 2 and 3 options on the
CPU. Therefore, it is better to assign 2 options (4 to MICs),
because a smaller granularity makes the application more flex-
ible against possible performance changes on heterogeneous
devices.

C. MT CAF-based Performance

In the MT CAF-based code, every process starts the compu-
tation by getting only one option from the master process and
saving the processing time in a coarray variable, accessibile
by any process. By doing so, each device understands how
much time is needed for computing one single option. After
a fixed number of computations, each accelerator checks
the value of the processing time on the correspondent host
device (e.g., MIC0 will check CPU0), and sets accordingly
the number of options needed to simulate homogeneity (on



Galileo, MICs are twice as fast as CPUs). Such phase is called
the “learning phase” of the load balancing algorithm; in the
current version this only happens once, but more complex and
adaptive versions can repeat this phase (sampling the compute
and/or remote communication time) several times using the
same strategy. However, it should be noted that the learning
phase of the load balancing has a cost, so we should not search
too many times.

In Figure 11 we compare the performance of the CAF-
based versions with the MT MPI-based version, also taking
into account different Intel MPI transport fabrics, specifically,
the TMI (Tag Matching Interface) and the TCP fabrics. For
instance, the label “shm:TCP”, means that the fabric on the left
hand side of the colon is used for intra-node communication
(in this case, shared memory), and the fabric on the right
hand side is used for inter-node communication. We observe
how the network fabric has a huge impact on performance,
in particular for the CAF-based version; in our case, since we
are running on a single node, inter-node communication means
communication between CPU and Xeon Phi using MPI.
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Fig. 11. Comparison of MPI vs. CAF using different MPI fabrics

Figure 11 also shows the effect of changing the message
progress strategy. The bars with a “ t” name suffix represent
the performance using the thread-based progress strategy pro-
vided by Intel MPI. We explicitly note that performance of
the CAF versions are better than MPI when the thread-based
progress is used on the TMI fabric. Switching the fabric from
TMI to TCP changes performance as well; in this case, the
thread-based progress is worse than the manual progress. In
both cases, using the TCP fabrics provides better performance
than TMI.

D. Hybrid CAF-based Performance

As mentioned in the introduction, using different devices
for different types of computation will become commonplace
in the exascale era, where the compute nodes will be equipped
with heterogeneous hardware. In this last experiment, we run
two different implementations (MO and MT) of the same
application on different hardware, in order to exploit as much
as possible the available heterogeneity.

As already mentioned, only CPU1 runs the MO version,
taking eight options per communication. Each process, except
the one running on CPU1, checks the compute time of CPU1
and adjusts the number of options to use accordingly (to
achieve homogeneity). A typical run on Galileo has eight
options (fixed) on CPU1, two on CPU0 and four on the two
Intel MICs.

We have chosen to declare CPU1 as “special” because
it suffers from higher communication costs than CPU0 (the
master process always runs on CPU0). This fact is related with
the costs introduced by the NUMA architecture: the two Intel
Haswell processors installed on a Galileo’s node are organized
as two non-uniform memory access (NUMA) CPUs. Each
portion of local memory on the CPU is called memory domain.
One CPU can access the memory domain of the other CPU
but at a higher cost than accessing the local domain.

The master process on CPU0, when the latter behaves as
worker, can get the data from the same memory domain, which
is very cheap; on the other hand, the process on CPU1 pays
a higher cost than CPU0, because it has to get the data from
a different memory domain. Having a bigger amount of data
on CPU1 benefits the communication costs, but penalizes the
scheduling granularity; on the other hand, because CPU0 has
the lowest communication cost, it mitigates the bad effects of
the scheduling granularity due to the eight options given to
CPU1.

Figure 12 shows the remarkable results obtained by the
MTH strategy when the TCP fabric is used. In fact, assuming
the cumulative bar of MT in Figure 9 as the maximum perfor-
mance reachable with the available hardware (represented by
the dashed line), we can see that the MTH solution provides
the closest performance to the maximum.
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Fig. 12. Hybrid CAF-based performance using different MPI fabrics

VIII. CONCLUSIONS

In this work we analyzed the performance of dynamic load
balancing algorithms implemented with MPI two-sided and



Coarray Fortran. The one-sided semantic of coarrays allowed
us to implement more advanced load balancing algorithms able
to adapt to the heterogeneous hardware provided. Using the
TCP fabric provided by Intel MPI, all coarray based versions
show better results than the original MPI two-sided version.
With the TMI fabric, choosing the right progression strategy
is critical; in fact, using the thread-based progress, provided
by Intel MPI, leads to higher performance compared to the
one shown by the manual progress.

The CAF-based algorithm also allows us to manage highly
heterogeneous situations, where two different versions of the
same code run, at the same time, on the hardware more suitable
for the performance needs.

Even though the CAF implementation used for the tests is
based on MPI-3.0, it is able to provide better performance
than an explicit MPI two-sided implementation. The reason
for that is due to the communication pattern required by the
application, which is more suitable for a one-sided semantic.

The pure MPI two-sided implementation works well when a
single thread on the master process is used as communication
thread, dispatching only one option for each request. A direct
translation of this algorithm from MPI two-sided to CAF leads
to poor performance, mainly because of the poor one-sided
implementation provided by the MPI layer.

On the other hand, a more complex algorithm which sends
more than one option at time, is more suitable for a one-sided
semantic than a two-sided one and allows to implement the
hybrid solution proposed in Section VII-D, which leads to the
best performance.

Although it is possible to implement efficient algorithms
using explicitly MPI one-sided routines, CAF provides a
cleaner and more understandable syntax, allowing to easily
describe complex parallel algorithms.

As future work, we plan to explore heterogeneous solutions
based on dynamic load balancing strategies for different and
more complex scientific problems.
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