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ABSTRACT

With the increasing availability of the Remote Direct Memory Ac-
cess (RDMA) support in computer networks, the so called Parti-
tioned Global Address Space (PGAS) model has evolved in the last
few years. Although there are several cases where a PGAS approach
can easily solve difficult message passing situations, like in particle
tracking and adaptive mesh refinement applications, the producer-
consumer pattern, usually adopted in task-based parallelism, can
only be implemented inefficiently because of the separation be-
tween data transfer and synchronization (which is usually unified
in message passing programming models).

In this paper, we provide two contributions: 1) we propose an
extension for the Fortran language that provides the concept of
Notified Access by associating regular coarray variables with event
variables. 2) We demonstrate that the MPI extension proposed by
foMPI for Notified Access can be used effectively to implement the
same concept in a PGAS run-time library like OpenCoarrays.

CCS CONCEPTS

« Computing methodologies — Parallel programming lan-
guages; Distributed programming languages;

KEYWORDS
MPL, PGAS, Coarray, Notified Access

ACM Reference format:

Alessandro Fanfarillo and Davide Del Vento. 2017. Notified Access in Coar-
ray Fortran. In Proceedings of EuroMPI/USA ’17, Chicago, IL, USA, September
25-28, 2017, 7 pages.

DOI: 10.1145/3127024.3127026

1 INTRODUCTION

In recent years computer architectures have changed significantly:
heterogeneous hardware, high level of parallelism, higher failure
rates and the lack of globally cache coherent systems will compel
users to write parallel applications in a more flexible way. In this
environment, task-based parallelism can be very effective because
it allows the programmer to cope efficiently with heterogeneous
hardware, dynamic workloads and failures.
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The producer-consumer communication pattern is widely adopted
in high performance parallel applications using any form of halo
exchange or task-based parallelism. All producer-consumer com-
munications requires two basic steps: 1) data transmission and 2)
synchronization. In the message passing model, both steps are pro-
vided by the receive operation. Remote Memory Address (RMA) pro-
gramming schemes, which include most Partitioned Global Address
Space (PGAS) languages, separate data transfer and synchronization
into different primitives. For the producer-consumer communica-
tion pattern, this approach is inefficient because it requires at least
three message transactions on the critical path. This inefficiency
has been deeply analyzed and tackled by Belli and Hoefler in [2];
we report their finding in Section 2.

To work around this inefficiency, we propose to add the concept
of Notified Access provided by [2] in coarray Fortran (CAF) by
associating a coarray event variable to a regular data coarray vari-
able. This approach would provide minimal impact on the already
existing Fortran 2015 features and it would not be complex to use
for end users. In Section 3 we explain why events are suitable for
implementing Notified Access in coarray Fortran and how their
implementation in OpenCoarrays can be easily adapted to fit the
Notified Access requirements.

As a proof of concept, we implemented the Notified Access in
OpenCoarrays [7] on top of the strawman Interface for Notified
Access for MPI proposed by Belli and Hoefler in [2] provided in
foMPI_NA. The implementation of Notified Access in OpenCoarrays
on top of foMPI_NA will be described in Section 4.

Then, in Section 5, we compare the performance of the Fortran
Notified Access implementation we are proposing in this paper
with the regular Fortran 2015 events, for a pipelined stencil called
Sync_P2P (from the Intel Parallel Research Kernels [5]). We also
compare the performance of our Fortran Notified Access with reg-
ular Fortran 2015 events and MPI two-sided version of a regular
stencil kernel applied on a Structured Grid, which represents the
common halo exchange communication pattern. We show that our
implementation of Notified Access in Coarray Fortran based on
foMPI_NA provides good performance.

Finally, in Section 7, we report our conclusions and future work.

2 FOMPI WITH NOTIFIED ACCESS

In [2], Belli and Hoefler examine the inefficiencies of the one-sided
communication functions when applied on the producer-consumer
communication pattern. Many producer-consumer communication
patterns need one message for synchronization, which implies
additional network transactions. For example, for a remote put
there will be one message for the actual data transfer, one for
communicating the remote completion and one for the explicit
synchronization. For a remote get, there will be two messages for



EuroMPI/USA ’17, September 25-28, 2017, Chicago, IL, USA

the actual data transfer and one for synchronization. See [2] for
details.

To tackle this inefficiency, Belli and Hoefler propose to extend the
RMA programming models with a new mechanism called Notified
Access which allows the target process to detect when a transfer is
completed without additional messages.

Notified Access adds a remote completion notification to any
remote access. The target process can use this notification for syn-
chronizing local or remote accesses to the buffer. The interpretation
of the notification depends on the action: if the notified access is a
read then the notification indicates that the data was copied and
the buffer can be overwritten; if the notified access is a write then
the notification indicates that the data was committed to memory
and can be read. The origin can mark accesses with a notification or
without, i.e., not all accesses have to trigger a remote notification.

While Notified Access is independent of a particular program-
ming model, Belli and Hoefler propose an interface for the Mes-
sage Passing Interface (MPI). They implemented the new interface
for Notified Access using the open source foMPI (Fast One Sided
MPI) [9] which supports the full MPI-3.0 One Sided interface. The
foMPI library is based on Cray DMAPP [1, 19] and XPMEM [23]
APIs for inter- and intra-node communications, respectively.

The extended foMPI-NA ! uses the uGNI API [1] that provides
direct access to Cray’s Fast Memory Access (FMA) and Block Trans-
fer Engine (BTE) mechanisms. Using both mechanisms it is possible
to directly notify the completion of a RDMA operation to the target
process.

2.1 MPI Interface for Notified Access

To extend MPI with Notified Access, Belli and Hoefler introduce
a notified variant for each communication operation in MPI RMA.
Each new function has an additional integer tag argument. In List-
ing 1 we show the C interface for MPI_Put_notify.

Listing 1: Interface MPI_Put_notify

int MPI_Put_notify(void *origin_addr, int origin_count,
MPI_Datatype origin_type, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_type, MPI_Win win,
int tag)

MPI request objects are used for notification at the target side.
The requests are initialized explicitly with the function
MPI_Notify_init and are not automatically freed.

Listing 2: Interface MPI_Notify_init

int MPI_Notify_init(MPI_Win win, int src_rank, int tag,
int expected_count,
MPI_Request *request)

MPI_Notify_init initializes a request for notification and binds
it to a specific MPI window with notification count, tag and source.
The returned MPI request object can be used with the usual MPI
test and wait functions. A request completes after expected_count
matching notified accesses have been performed. Matching is per-
formed in order and it is defined through source and tag and the
wild-cards MPI_ANY_SOURCE and MPI_ANY_TAG are supported. If a
request is completed, the returned MPI status object includes the
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information of only the last matching notified access. In Listing 2
we show the C interface for MPI_Notify_init.

The requests initialized with MPI_Notify_init should be freed
with MPI_Request_free because they are intended to be persis-
tent requests. Before each use, requests have to be started with
MPI_Start. Once started, request completion can be progressed
and completed with the normal test and wait operations.

Because many of today’s networks do not support hardware
message matching, the matching mechanism for notified access is
implemented in software. Note that the data movement is still fully
performed in hardware and only the processing of the light-weight
notification in software.

3 FORTRAN 2015

Coarray Fortran (also known as CAF) is a set of features of the
Fortran 2008 standard (ISO/IEC 1539-1:2010) [16] that make Fortran
a Partitioned Global Address Space programming language.

The coarray definition included in Fortran 2008 defines a simple
syntax for accessing data on remote images, synchronization state-
ments and collective allocation and deallocation of memory on all
images. Although these features allow one to write a totally func-
tional coarray program, they do not allow to express more complex
and useful mechanisms for synchronization, images organization
and failure management.

Technical Specification 18508 [13] proposes, among several new
extensions to the coarray facilities defined in Fortran 2008, Events.

Events provide a convenient mechanism for ordering execution
segments on different images without requiring that those images
arrive at synchronization point before any is allowed to proceed.
This feature implements a fine grain synchronization mechanism
based on a limited implementation of the well known semaphore
primitives. All the features defined in TS-18508 have been approved
by the standard committee and will be part of the Fortran 2015
standard.

3.1 Events

Events represent the safer and more general implementation of
atomics. An event coarray variable can be seen as a counter that
can be incremented by any image, using the event post statement;
this routine never blocks and should return as quick as possible.

An image can wait for the event variable to reach a predefined
value of posted events using the event wait statement; this block-
ing routine can be invoked only on local variables. The statement
takes two arguments: 1) the event variable and 2) the number of
events to wait for. Once the routine returns the event variable is
set to zero.

Since an image may want to check the value of a local event
variable without waiting, an event_query statement is also pro-
vided. This routine takes two arguments: 1) the event variable and
2) the number of events that have been posted so far, which will
be the output of the routine. When the routine returns, the inter-
nal counter of the event variable is never changed. An example of
event wait and event_query is shown in Listing 3.

Listing 3: Event wait and query

event wait(ev,until_count
call event_query(ev,count

count)
count)
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The main difference between events and the general semaphores
stands in the local applicability of the event wait and event_query
routines; this restriction makes events safer, easier to use and highly
performing.

3.2 OpenCoarrays

OpenCoarrays [7] is an open-source software project for developing,
porting and tuning transport layers that support coarray Fortran
compilers. It targets compilers that conform to the coarray parallel
programming feature set specified in the Fortran 2008 standard. It
also supports several features proposed for Fortran 2015 in the draft
Technical Specification TS-18508 “Additional Parallel Features in
Fortran” [13]. OpenCoarrays uses a 3-clause BSD-style open-source
license to facilitate its incorporation into free and proprietary com-
piler software and it is currently used by the GNU Fortran compiler.
OpenCoarrays defines an application binary interface (ABI) that
translates high-level communication and synchronization requests
into low-level calls to a user-specified communication run-time
library. This design decision liberates compiler teams from hard-
wiring communication-library choice into their compilers and it
frees Fortran programmers to express parallel algorithms once, and
reuse identical CAF source with whichever communication library
is most efficient for a given hardware platform. At the time of this
writing, OpenCoarrays covers almost all the Fortran 2008 coarray
features, events, the collective/reduction and new atomic intrinsics
belonging to the Fortran 2015 standard and an experimental version
of failed images.

Since the first release of OpenCoarrays (August 2014), the widest
coverage of coarray features was provided by a MPI-3 based run-
time library (LIBCAF_MPI). Because of the one-sided nature of coar-
rays, the vast majority of the run-time library uses MPI-3 one-sided
communication routines based on passive synchronization [11].

Because foMPI routines differ from the standard MPI routines
only for the prefix library name (e.g. MPI_Win_create vs.
foMPI_Win_create), it is straightforward to transform the MPI
version of OpenCoarrays in foMPL

Despite the good matching of coarray one-sided semantics and
MPI one-sided routines, it should be noted that the behavior of some
MPI routines differ from the CAF counterpart. A typical example
is the difference between MPI_Get and getting data from a remote
coarray variable. For MPI_Get, the function call returns before the
data arrives; the programmer can only assume that the operation
has completed after a synchronization call (like MPI_Win_F1lush).
For coarrays, the Fortran semantics related to a variable assignment
has to be respected; this means that the programmer can assume
that the data has arrived as soon as the read operation returns.

4 IMPLEMENTING NOTIFIED ACCESS USING
EVENTS

The concept of Notified Access described in Section 2, can be im-
plemented in coarray Fortran by binding an event variable with
the coarray variable that contains the data.

For a coarray “put” operation, every time the coarray variable
gets updated by a remote process using a “put”, an event post
gets automatically triggered on the associated event variable to
communicate that the variable got updated. For a coarray “get”
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operation, every time the coarray variable is read by a remote pro-
cess using a “get”, an event post gets triggered on the associated
event variable to communicate that the variable has been read and
it can be safely overwritten. Because the coarray “put” operation
provides the highest opportunity for overlapping communication
with computation, in this work we will focus only on the notified
“put” operation. In fact, the Fortran syntax for “put” does not require
the actual data movement to be completed before the end of the
segment, whereas for get the data movement must be completed
before the call returns. However we think that notified access for
coarray “get” operations has potential and we plan to explore this
solution in a future work.

Because the Fortran 2015 standard does not provide a way to
connect an event with a regular coarray variable, an easy-to-use
extension would be the event attach routine. A possible signature
of this routine is shown in Listing 4.

Listing 4: Proposed event attach signature

subroutine event attach (event_variable,coarray_variable,
[stat=statvar])

The coarray_variable represents the coarray variable that con-
tains the data whereas event_variable represents the event vari-
able that should be signaled when an image performs a remote
access on coarray_variable using a “put”.

Because a coarray variable can be a scalar or array, static or
dynamic, and of intrinsic or derived type, the event attachroutine
should also allow the user to specify a certain range of the coarray
variable to bind with an event. For the purpose of this paper we
provide motivation and proof-of-concept for an implementation of
Notified Access in CAF. The complete definition of the semantic
of the event attach subroutine is beyond the scope of this paper
and left as a future work.

4.1 Implementation in OpenCoarrays using
foMPI_NA

The first step to take in order to implement Notified Access in
OpenCoarrays is writing the event attach function. As shown in
Listing 4, the function takes two compulsory arguments and one
optional. The function inserts the coarray data and event variables
in a linked list in order to keep track of this association, using the
structure shown in Listing 5. The notified_ev field is initialized
to NULL and it is needed to keep track of the foMPI_Request
associated with the notification event. The function event attach
is local, non-blocking and does not require any communication.

Listing 5: Attached events structure

struct attached_events
{
caf_token_t ev;
caf_token_t var;
void *notified_ev;
struct attached_events *next;

3

Secondly, the event wait and event_query routines must be
adapted to the new mechanism. The event wait statement takes
two arguments: 1) the event variable and 2) the number of events
to wait for. Because foMPI_NA requires to declare the number of
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notifications to receive in the foMPI_Notify_init function (see
Listing 2, argument expected_count), and performs the wait using
the regular foMPI_Wait function, we implemented initialization
AND wait directly inside event wait. In case a notification gets
posted before the invocation of foMPI_Notify_init on the des-
tination, foMPI_NA is able to take care of the unexpected notifi-
cations. In Listing 6 we report an example of how event wait
can be implemented using the Notified Access support provided by
foMPI_NA.

Listing 6: Event wait based on NA

if(var_attached)

{
notified_ev = (foMPI_Request *)

malloc(sizeof (foMPI_Request));
tmp_ev->notified_ev = notified_ev;
foMPI_Notify_init(xvar_attached, foMPI_ANY_SOURCE,
ev_id, until_count, notified_ev);

foMPI_Start(notified_ev);
foMPI_Wait(notified_ev, &status);
foMPI_Request_free(notified_ev);

3}

else

// Regular event wait implementation here

}

Currently, in OpenCoarrays regular events are implemented in
two alternative ways: 1) using the MPI RMA atomic operations; 2)
using point-to-point MPI operations and the unexpected message
queue. In [8], Fanfarillo and Hammond describe pros and cons of
the two approaches and show the performance differences. Both
approaches are incompatible with the implementation of event
wait based on Notified Access (NA) and thus the library must
provide support for both, NA-based and non NA-based solutions,
as shown in the else branch of Listing 6.

This coexistence of different implementations for event wait
and event query introduces a limitation: the event cannot be
managed as a regular event variable AND a notified access request
at the same time. Namely, it is not possible to perform an event
post on an event attached to a variable. However, arguably this
limitation is not really a problem, and in fact forces the programmer
to a clearer separation of concerns. Should explicit “event post”s be
needed, they should use a separate event variable and not the same
that is posted automatically with Notified Access.

5 RESULTS

Each of the following test has been run on Swan, a small Cray XC40
composed by a variety of compute nodes; for the purpose of our
investigation we used the nodes equipped with 2 Broadwell 22-core
Intel Xeon at 2.2 GHz with 128 GB of RAM DDR4-2400. For all the
test cases we allocate 32 images on each compute node.

5.1 Sync_P2P Kernel

The first kernel, called sync_p2p, is taken from the Parallel Research
Kernels (PRK) suite [5, 21, 22]. The suite focuses on providing a
set of kernels that covers the most common patterns of communi-
cation, computation and synchronization encountered in parallel
HPC applications. The suite? is publicly available on GitHub and

Zhttps://github.com/ParRes/Kernels
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Figure 1: Instance of p2p_sync kernel

currently provides parallel kernels written in a number of different
programming models (OpenMP, MPI two-sided, MPI one-sided,
MPI+OpenMP, CAF, UPC, SHMEM, Charm++, Grappa, Python,
etc.).

The kernel sync_p2p implements a stencil code with a demand-
ing data dependence that is typically resolved using a fine-grain
software pipeline technique. A typical instance of this kernel is
shown in Figure 1: in order to be computed, a component in posi-
tion (i,j) requires data from the components in position (i-1,j), (i,j-1)
and (i-1,j-1); as shown in Figure 1b, it is possible to compute in
parallel several columns of the grid (pipeline among columns). A
parallel example of this kernel is depicted in Figure 2, where Image
2 cannot start the computation on its second column because of
the data dependency with Image 1. In this case, it is important to
have a fine-grain, lightweight synchronization mechanism capable
to inform Image 2 that the data needed is ready.

@ @

¢ o [\
J

~ >0 @

£

@ e o

Figure 2: Parallel pipelined execution of p2p_sync kernel

In the CAF 2008 version already included in the PRK suite, the
synchronization among images is implemented with sync images
statements. This mechanism allows to the image that has invoked it
to synchronize only with the set of images passed as argument. In a
case like the one depicted in Figure 2 but with 3 images involved, Im-
age 2 would stop twice: one for synchronizing with Image 1 (where
Image 2 is the “consumer”) and one with Image 3 (where Image 2 is
the “producer”). Events represent the most efficient mechanism for
dealing with this sort of producer-consumer problems.

In [8], Fanfarillo and Hammond convert the Fortran 2008 version
of the kernel to Fortran 2015, associating an event variable to each
column of the grid. As soon as a “producer” (upper) image has
completed the computation on its own column, it posts the event to
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the correspondent event variable on the “consumer” image. Because
the event post routines is always non-blocking, the producer is
free to continue the remaining computation. On the other hand,
the “consumer” image waits for a single, specific, event related only
to the data needed.

In this work, we slightly modify the Fortran 2015 version of
sync_p2p by attaching the event variable related with a column of
the grid with the column itself.

The modification results in a simpler, more clear and less error
prone source code, because the explicit event posts are removed,
and therefore cannot be misunderstood, forgotten or misplaced by
an inexperienced programmer. In order to test the performance of
the new approach, we run a strong scaling test on a fixed grid size
of 32768x32768 elements. We tested the approach based on Notified
Access and the regular Fortran 2015 version based on events using
4 different event implementations.

In Figure 3, the Notified Access bars represent the new mecha-
nism proposed in this paper and described in Section 4, which has
been implemented on top of foMPI_NA. The P2P bars represent the
point-to-point algorithm presented in [8] to implement events on
top of MPI two-sided and the Unexpected Message Queue. RMA
foMPI represents an event implementation based on the MPI RMA
atomic operations provided by foMPI_NA. RMA and RMA_AMO
represent an event implementation based on the MPI RMA atomic
operations provided by the standard Cray MPI implementation
based on DMAPP (MPICH-7.5.3). For RMA, RMA_AMO and P2P,
we set the environmental variable MPICH_RMA_OVER_DMAPP equal
to 1 in order to use the DMAPP version for RMA. This setting en-
sures asynchronous progress for the MPI RMA operations using a
thread-based approach.

For the RMA_AMO we set the environmental variable
MPICH_RMA_USE_NETWORK_AMO to 1. This variable set the use of
network Atomic Memory Operations (AMOs) for selected MPI
operations (like the ones used to implement events).
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RMA
RMA_AMO
2.5e+04 - q
2.0e+04 - q
[2]
o
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Figure 3: Performance of p2p_sync kernel
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For this particular test case, which exposes a producer-consumer
communication pattern, the solution based on Notified Access is
always better than any other mechanism, dramatically at large scale.
This is the case because the kernel is synchronization bound and
the foMPI_NA library is very effective in limiting the overhead of
the synchronizations. Because of the semantics of Notified Access,
it would be impossible to exploit these benefits without extending
the Fortran language. The performance achieved by our prototype
demonstrates that the proposed event attach Fortran extension
could effectively use foMPI NA to improve the performance of the
synchronizations, as shown in Figure 3.

5.2 Structured Grid Kernel

Structured grids problems are very common in scientific comput-
ing. Data is arranged in a regular multidimensional grid (most
commonly 2D or 3D), and the computation proceeds as a sequence
of grid update steps. At each step, all points are updated using val-
ues coming from a small neighborhood around each point (stencil).
Each processor can be statically assigned to a contiguous subgrid,
and can perform each update step locally and independently of
other nodes. Each node only has to communicate and synchronize
with neighboring nodes on the grid, exchanging data from the
boundary of their sub-grids at the end of each step. This kernel
represents one of the most common communication pattern in sci-
entific computing: the halo exchange. To manage synchronization
overheads, each decomposed domain is logically overlapped at the
boundaries and is updated with neighbor values before the com-
putation proceeds. This update on the overlapped regions is called
halo exchange.

Because the structured grid is usually uniformly distributed
across the images, the computation takes almost the same time
on all processes. In this situation, the message passing program-
ming model leads to good performance because the synchronization
among processes is implicit in the halo exchange, which occurs
almost at the same time because of the homogeneous data par-
titioning. PGAS languages, and in particular CAF, are penalized
because they require explicit synchronization calls at the end of
the communication phase.

The real power of PGAS languages relies on the one-sided se-
mantics and the possibility of overlapping communication with
computation. In our test case, a global 2D grid is partitioned among
processes assigning columns as uniformly as possible; the halo
exchange is required only for the right and left neighbors. The com-
putation is performed in a column-wise fashion starting from the
leftmost column. Using CAF, it is possible to send the first column
to the left neighbor with a put operation while computing the re-
maining columns. The synchronization can be implemented using
an event variable for the left and right halo region on each process.
Listing 7 shows how this overlapping can be achieved using events.

Listing 7: Structured Grid using Events

do i=1,NR

T(i,1) = .25 * ( Told(i+1,1)+Told(i-1,1)+
Told(i,2)+Told(i,0) )

enddo

right_halo(:)[prev] = T(:,1)

do j=2,NCL



EuroMPI/USA ’17, September 25-28, 2017, Chicago, IL, USA

do i=1,NR
T(i,j) = 0.25 * ( Told(i+1,j)+Told(i-1,j)+
Told(i,j+1)+Told(i,j-1) )
enddo
enddo

event post(ready_right[prevl])
left_halo(:)[next] = T(:,NCL)
event post(ready_left[next])

In this scenario, Notified Access are not as critical as for the previ-
ous test case, but they can still produce results that are competitive
with MPI two-sided, even for this particular communication/com-
putation pattern, which is very well suited for MPI two-sided.
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Figure 4: Performance of Structured Grid kernel

In Figure 4, we show the time spent for applying a five-point
stencil on a square grid with side 65536 points wide, using coarray
with Notified Access (Notified Access), coarray with events using
the MPIRMA provided by foMPI (RMA foMPI), coarray with events
implemented on top of MPI two-sided and Unexpected Message
Queue (P2P) and pure MPI two-sided (MPI). In the latter case, there
is no opportunity to overlap communication with computation
because the data transfer is performed at the end of the computation
phase using MPI_ISend and MPI_IRecv routines. The effect of the
overlapping is much more evident when the number of cores is
small (more time spent in computation). The version based on
coarrays, implemented on top of the RMA atomic operations of
foMPI provides the best performance.

The Notified Access performance is penalized because the op-
eration itself takes more time that a regular “put” operation and
the benefit brought by the overlapping gets hidden by the higher
cost imposed by the function. Furthermore, the performance of
foMPI using XPMEM strongly depends on the number of processes
allocated on the same node.

A. Fanfarillo et al.

6 RELATED WORK

The concept of put-with-notify and its potential for dealing with
producer-consumer problems, using PGAS languages, has been
studied for years.

Jose el al. [14] propose and implement extensions to OpenSH-
MEM [4], such as non-blocking put, and non-blocking put-with-
notify. Similarly, Dinan et al. [6] propose a SHMEM extension that
utilizes capabilities present in most high performance interconnects
(e.g. communication events) to bundle synchronization information
together with communication operations.

Unified Parallel C (UPC) [20] is another PGAS parallel program-
ming model, that provides capabilities similar to SHMEM. The
current UPC language provides similar synchronization routines as
SHMEM, with the addition of split- phase barriers and locks. In [3],
Dan Bonachea proposes the concept of semaphores to UPC and
defines the upc_memput_signal and upc_memput_signal_async
to implement the concept of put-with-notify.

The Aggregate Remote Memory Copy Interface library (ARMCI) [15]

also provides a put-with-flag operation, that attaches a flag variable
update with data transfer. In this mechanism, the origin of a remote
write waits for the completion of the write and then notification
message. This approach delays the notification to the target process
for a round trip time of the network. Similarly, the GASPI [10, 18]
PGAS library provides a write-and-notify operation, that bundles
an event notification with data movement. In both cases, the notifi-
cation is performed by a write, rather than an atomic update. Thus,
for algorithms that require many synchronizations, many flag and
event variables would be needed.

LAPI [17] provides a special data type called counter variable. A
counter variable can be used to count message completion at the
target. LAPI also provides a function to wait until the value of the
counter reaches a specified value. The GET and PUT functions of
LAPI have two arguments for the counters, one is a remote counter
for target completion, and the other is a local counter for initiator
completion.

Hori et al. [12] propose to associate a synchronization flag with
memory regions. A notification on the flag gets triggered automat-
ically when the memory region associated with it gets accessed.
Although very promising, this approach cannot be supported effi-
ciently on most of today’s RDMA networks.

7 CONCLUSIONS AND FUTURE WORK

In this paper we show how the Notified Access mechanism proposed
in [2] can be implemented in coarray Fortran and how it can benefit
certain communication patterns like producer-consumer.

In order to implement Notified Access in CAF, we decided to
introduce one simple language extension called event attach
able to connect a coarray variable containing data with a coarray
event variable. By doing so, every time the coarray data variable
gets accessed by a remote process, an event gets automatically
posted on the associated event variable. The definition of the event
attach has been left incomplete because the focus of this paper is
more on the potential of Notified Access and their implementation.
We plan to explore a good definition of event attach in a future
work.
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For a synchronization bound test case like sync_p2p (described
in Section 5.1), the implementation of Notified Access in CAF based
on the strawman MPI interface proposed in [2] and implemented
in foMPI NA, provides the best performance compared to all the
other event-based alternatives.

For a test case like the structured grid stencil described in Sec-
tion 5.2, the implementation of Notified Access is penalized because
the operation itself takes more time that a regular “put” operation,
and the benefit brought by the communication/computation over-
lapping gets hidden by the higher cost imposed by the function.
Even in this scenario where the traditional message passing model
is well suited, Notified Access provides competitive performance.

We have noticed that the performance of data transfer and noti-
fication, based on XPMEM for shared memory in foMPI, are some-
times influenced by the number of processes allocated on the com-
pute node. Currently, there are two possible alternatives already
implemented in foMPI: one based on the usual memcpy operation
and another based on SSE instructions. As a future work, we plan
to explore other ways to perform the memory copy using XPMEM,
like using non-temporal store instructions or optimizing the copy
for a specific architecture.
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