
Leveraging OpenCoarrays to Support

Coarray Fortran on IBM Power8E

Alessandro Fanfarillo, Damian Rouson

Sourcery Inc.

www.Sourceryinstitue.org

Executive Summary

We report on the experience of installing and using the OpenCoarrays Message Passing Interface (MPI) transport layer

to support the compilation of coarray Fortran (CAF) programs on a single IBM Power node in the Cedes cloud.

We include a few comparisons between the performance a competent application developer would attain with

two-sided MPI communication and the performance achieved with the newer MPI 3.0 one-sided communication that

OpenCoarrays generates from CAF programs. We also demonstrate the OpenCoarrays support for the parallel

collective subroutines that have been proposed for the upcoming Fortran 2015 standard.

This paper's results and results we report elsewhere raise an important question for compiler development teams:

• Do the potential performance benefits and profit incentives associated with hardwiring CAF support to a

proprietary communication library outweigh the performance benefits and cost reductions afforded by

maintaining the flexibility to link applications to different communication libraries on different platforms?

Our results also raise an important question for application developers:

• Do the potential performance benefits of embedding communication library calls directly into source code

outweigh the costs of having to re-engineer the application's communication kernels as the communication

library evolves or as better libraries become available?

We believe the answers to these questions point toward compiler and application designs analogous to what

OpenCoarrays facilitates.

Introduction

OpenCoarrays

OpenCoarrays1 is an open-source software project for developing, porting and tuning transport layers that support

coarray Fortran compilers. We target compilers that conform to the coarray parallel programming feature set specified

in the Fortran 2008 standard. We also support several features proposed for Fortran 2015 the draft Technical

Specification TS18508 Additional Parallel Features in Fortran2.

The OpenCoarrays project team aims to

• Jump-start and accelerate compiler support for the internationally standardized coarray Fortran parallel

programming model,

• Ease application developers' adoption of coarray Fortran by providing user training in parallel programming in

modern Fortran, and

• Assist application developers with parallelizing legacy serial codes and co-developing modern parallel codes.

In support of the item 1 above, the OpenCoarrays team adopted a permissive license that is attractive to corporations

interested in either incorporating OpenCoarrays into their own compilers or programming to the OpenCoarrays

Application Binary Interface (ABI).

4 ACM Fortran Forum, August 2015, 34, 2

1 http://www.opencoarrays.org/

2 http://isotc.iso.org/livelink/livelink?func=ll&objId=17181227&objAction=Open



Besides providing source code, OpenCoarrays also makes an important design statement that we hope will influence

the development of CAF compilers industry-wide. Whereas current commercial CAF compilers tie the compiler

implementation to a vendor-specific transport layer, OpenCoarrays demonstrates the viability of liberating the

application developer to link to the transport layer that is best suited for robust and efficient execution of their specific

application on their specific platform. The same design decision liberates compiler teams from the need for costly

rewrites should it prove profitable to change transport layers in subsequent compiler versions. We provide a single ABI

capable of driving an MPI transport layer or transport layers built atop any one of several other communication

substrates, including for example, GASNet3, ARMCI4, and GASPI5.

For present purposes, we demonstrate the default OpenCoarrays transport layer LIBCAF_MPI using MPICH 3.1.46

and we compile CAF source codes using the GNU Compiler Collection7 (GCC) 5.1 Fortran compiler GFortran.

GFortran has adopted OpenCoarrays to support compilation of all parallel CAF executable files. However,

OpenCoarrays remains a separate project with its own BSD-style license.

A broader study of the performance of OpenCoarrays in a variety of benchmarks and application prototypes running on

a variety of platforms can be found in our PGAS 2014 paper8.

Machine description and limitations

The IBM Power machine used during the investigation was a single virtual machine provided by Cedes equipped with a

Linux Ubuntu 14.10 operating system. The product name assigned by Cedes to such system is Linux on Power VMs -

Linux on Power VM (One Time - Short Term). The virtual machine exposes to the operating system eight POWER8E

cores , 2 GB of RAM and 20 GB of hard disk.

In comparing the CAF performance with that of embedding two-sided MPI communication into Fortran source codes,

it is important to note that all runs executed on a single virtual machine without any network involvement. Such an

architecture could produce performance results that are not repeatable because of the platform's virtualized nature. The

availability of POWER hardware at no cost was the sole driver on our use virtualization. We have successfully

executed OpenCoarrays on larger, distributed-memory non-POWER platforms, and we expect no difficulties in

executing on larger POWER platforms.

Methodology

Setting up

The default IBM Power machine provided a very limited set of pre-installed software packages. After the installation

of some useful packages needed by GCC (e.g., binutils, make, flex, bison, etc.), we built GCC 5.1 from source.

Compiling and installing GCC 5.1 was effortless with no errors or unexpected behaviours.

Next we used GCC 5.1 to build MPICH-3.1.4 from source. Again we encountered no difficulties. Finally, a simple

issuance of ``make'' built the OpenCoarrays LIBCAF_MPI library from our Gothab repository, again with no

difficulties.

ACM Fortran Forum, August 2015, 34, 2 5

3 http://gasnet.lbl.gov/

4 http://hpc.pnl.gov/armci/

5 http://www.gaspi.de/

6 https://www.mpich.org/

7 http://gcc.gnu.org/

8 http://www.opencoarrays.org/publications



Tests: purpose and description

Our tests had a twofold purpose:

• To verify the functioning of OpenCoarrays-enabled CAF codes on an IBM POWER machine;

• To compare the performance of OpenCoarrays-enabled CAF codes to the more common scenario of Fortran

source codes containing raw, two-sided MPI calls.

We served the first purpose by executing CAF codes that use Fortran 2008 communication and synchronization to

perform a collective communication task. As a bonus, our results also demonstrated the superior performance of the

proposed Fortran 2015 cosum and cobroadcast collective subroutines relative to their aforementioned counterparts

that were manually coded in Fortran 2008.

We served the second purpose by executing a straightforward bandwidth benchmark. The bandwidth test case analyses

the performance of two-sided MPI communication and CAF (using one-sided MPI 3.0 communication under the

hood) during the transfer of data (C double values). The test repeats the measurement 100 times for each block size and

returns the average value.

6 ACM Fortran Forum, August 2015, 34, 2



Results

Collectives

This section shows the performance of manually coded Fortran 2008 collective procedures and the proposed Fortran

2015 intrinsic collective subroutines as enabled in GFortran by OpenCoarrays. Figure 1 depicts the performance of a

broadcast operation based on a binary tree approach transferring 32-bit integers written in Fortran 2008 and a broadcast

using a binomial tree approach in Fortran 2008. Although the binary tree algorithm outperforms the binomial tree

algorithm in the plotted results, tests we have run on other architectures indicate that the relative performance of the

binomial and binary trees reverses when the number of cores involved increases.

ACM Fortran Forum, August 2015, 34, 2 7

 0

 5

 10

 15

 20

 25

 30

2 4 8

us
ec

Cores

Manual vs. Built-in Co_broadcast

Co_bcast
Binary_tree_bcast

Binomial_tree_bcast

Figure 1: Comparison between proposed Fortran 2015 intrinsic broadcasts

and manually constructed Fortran 2008 broadcast.



In Figure 2 , we compare handwritten Fortran 2008 binary-tree, recursive-doubling, and alpha-tree algorithms with

OpenCoarrays Fortran 2015 cosum collective subroutine for parallel sum reduction. In investigations on larger

platforms, we have observed similar trends for the relative performance of each handwritten algorithm with increasing

core count.

Figures 1 and 2 exemplify the consistent superiority of the OpenCoarrays Fortran 2015 intrinsic collectives relative to a

variety of handmade Fortran 2008 collectives. Source code for these tests will be incorporated into the test suite in the

OpenCoarrays Gothab repository.

MPI vs. CAF

In this section, we compare the performance of two-sided MPI and CAF. The importance of this comparison lies in the

potential performance benefits offered by the more advanced, one-sided MPI 3.0 communication that OpenCoarrays

uses to support CAF codes. An added significance of the comparison lies in the increased complexity of one-sided

MPI, which could prove prohibitive for many application developers.

8 ACM Fortran Forum, August 2015, 34, 2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2 4 8

us
ec

Cores

Manual vs. Built-in Co_sum

Co_sum
Binary_tree_sum

Rec_tree_sum
Alpha_tree_sum

Figure 2: Comparison between proposed Fortran 2015 intrinsic collective summations

and manually constructed Fortran 2008 collective summation.



Figure 3 shows, on logarithmic scale, that OpenCoarrays can outperform two-sided MPI in terms of bandwidth when

used on a single node. This advantage most likely stems from the efficient implementation of one-sided MPI provided

by MPICH. Such a test case run in shared memory should not be interpreted as providing an exhaustive comparison

between two-sided MPI and one-sided MPI-based CAF. With the latter caveat, the one-sided support of a modern MPI

implementation compares favorably in this limited test with the two-sided approach found more commonly in

applications.

Discussion

The results in Section embody the OpenCoarrays project team goal of ``jump-starting'' development for both compiler

teams and application developers. By providing early support for performance-enhancing Fortran 2015 features,

OpenCoarrays enables compiler vendors and application developers to leapfrog the capabilities offered by current

Fortran 2008 implementations. Furthermore, the communication bandwidth results demonstrate the competitiveness

of the OpenCoarrays one-sided MPI communication model in comparison with the current widespread practice of

embedding two-sided MPI in Fortran source codes.

Conclusions

Our results demonstrate the ease with which OpenCoarrays enables compiling CAF applications on an IBM Power

machine. We employed GNU Fortran for convenience. We expect that linking OpenCoarrays to the proprietary IBM

ACM Fortran Forum, August 2015, 34, 2 9

 1

 10

 100

 1000

 10000

 100000

1 2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152
M

B
/s

ec

Block size (doubles)

Bandwidth single node 4 cores POWER Architecture

Caf_Bw
MPI_Bw

Figure 3: Bandwidth comparisons between MPI two-sided and coarrays



compiler and communication technologies would offer POWER platform-specific performance enhancement

opportunities not contemplated or explored in the current study.

Our results also demonstrate the consistent superiority of the OpenCoarrays Fortran 2015 collective broadcast and

summation subroutines relative to a variety of handwritten Fortran 2008 counterparts. Even though the limits imposed

by access to a single compute node did allow for a larger-scale comparison, the results suggest that the one-sided

MPI-based communication provided by OpenCoarrays, almost always outperforms MPI two-sided communication in

simple data transfers.

Although we studied the behaviour of only the default OpenCoarrays LIBCAF_MPI transport layer, the favourable

results suggest the viability of the OpenCoarrays design decision to liberate the compiler team and application

developer from choosing a specific communication substrate. The results presented in this paper demonstrate that the

resulting design can offer improvements in raw bandwidth as well as algorithmic improvements afforded by a rich set

of intrinsic collective procedures. In previous tests not discussed in this paper, we have recompiled CAF codes without

modification and linked them to other communion libraries such as GASNet. For some applications on some

platforms, the resulting flexibility can offer additional performance enhancements not described in this paper. Such

behaviour addresses the first of the two questions in the Executive Summary by indicating that the flexibility to vary

the communication library supporting CAF offers a more attractive path than hardwiring a dependence on one

communication library.

Regarding the second question in the Executive Summary, our experience suggests that many application developers

are not keeping up with the evolution of the MPI standard, are not evaluating alternatives once a choice has been made,

and are not confident in tackling the complexity of MPI 3.0 one-sided communication. In such cases, the performance

benefits OpenCoarrays offers by insulating the application from MPI outweigh the performance costs of wrapping

MPI. A CAF code supported by MPI 3.0 one-sided communication provided by OpenCoarrays outperforms a

comparable Fortran code with raw, two-sided MPI embedded in the source.

10 ACM Fortran Forum, August 2015, 34, 2




