
OpenCoarrays: Open-source Transport Layers Supporting
Coarray Fortran Compilers

Alessandro Fanfarillo
∗

University of Rome
Tor Vergata
Rome, Italy

Tobias Burnus
†

Munich, Germany
Valeria Cardellini

‡

University of Rome
Tor Vergata
Rome, Italy

Salvatore Filippone
§

University of Rome
Tor Vergata
Rome, Italy

Dan Nagle
¶

National Center for
Atmospheric Research

Boulder, Colorado

Damian Rouson
q

Sourcery Inc.
Oakland, California

ABSTRACT
Coarray Fortran is a set of features of the Fortran 2008 stan-
dard that make Fortran a PGAS parallel programming lan-
guage. Two commercial compilers currently support coar-
rays: Cray and Intel. Here we present two coarray trans-
port layers provided by the new OpenCoarrays project: one
library based on MPI and the other on GASNet. We link
the GNU Fortran (GFortran) compiler to either of the two
OpenCoarrays implementations and present performance com-
parisons between executables produced by GFortran and the
Cray and Intel compilers. The comparison includes syn-
thetic benchmarks, application prototypes, and an applica-
tion kernel. In our tests, Intel outperforms GFortran only on
intra-node small transfers (in particular, scalars). GFortran
outperforms Intel on intra-node array transfers and in all
settings that require inter-node transfers. The Cray compar-
isons are mixed, with either GFortran or Cray being faster
depending on the chosen hardware platform, network, and
transport layer.

Keywords
Fortran, PGAS, Coarrays, GCC, HPC

∗fanfarillo@ing.uniroma2.it - To whom correspondence
should be addressed
†burnus@net-b.de
‡cardellini@ing.uniroma2.it
§salvatore.filippone@uniroma2.it
¶dnagle@ucar.edu
qdamian@sourceryinstitute.org

1. INTRODUCTION
Coarray Fortran (also known as CAF) originated as a syn-
tactic extension of Fortran 95 proposed in the early 1990s
by Robert Numrich and John Reid [10] and eventually be-
came part of the Fortran 2008 standard published in 2010
(ISO/IEC 1539-1:2010) [11]. The main goal of coarrays is
to allow Fortran users to create parallel programs without
the burden of explicitly invoking communication functions
or directives such as those in the Message Passing Interface
(MPI) [12] and OpenMP [2].

Coarrays are based on the Partitioned Global Address Space
(PGAS) parallel programming model, which attempts to
combine the SPMD approach used in distributed memory
systems with the semantics of shared memory systems. In
the PGAS model, every process has its own memory ad-
dress space but it can access a portion of the address space
on other processes. The coarray syntax adds a few specific
keywords and leaves the Fortran user free to use the regular
array syntax within parallel programs.

Coarrays were first implemented in the Cray Fortran com-
piler, and the Cray implementation is considered the most
mature, reliable, and high-performing. Since the inclusion
of coarrays in the Fortran standard, the number of compil-
ers implementing them has increased: the Intel and g95 [15]
Fortran compilers as well as compiler projects at Rice Uni-
versity [6] and the University of Houston (OpenUH) [5] sup-
port coarrays.

The Cray compiler only runs on proprietary architectures.
The Intel compiler is only available for Linux and Windows,
and the standard Intel license only supports coarrays in
shared memory; running in distributed memory requires the
Intel Cluster Toolkit. These technical limitations, in con-
junction with the cost of a commercial compiler, limit the
widespread usage of coarrays.

The availability of coarray support in a free compiler could
contribute to wider evaluation and adoption of the coarray
parallel programming model. The free, released compilers

with coarray support, however, do not support several other
standard Fortran features, which limits their utility in mod-
ern Fortran projects. For example, neither the Rice compiler
nor OpenUH nor g95 supports the object-oriented program-
ming (OOP) features that entered the language in the For-
tran 2003 standard. Furthermore, g95’s coarray support is
only free in its shared-memory configuration. Configuring
the compiler for multi-node coarray execution requires pur-
chasing a commercial license.

Considering the compiler landscape, the advent of support
for coarrays in the free, open-source, and widely used GNU
Fortran compiler (GFortran) potentially represents a water-
shed moment. The most recent GFortran release (4.9.1)
supports most features of the recent Fortran standard, in-
cluding the aforementioned OOP features [4]. Furthermore,
the pre-release development trunk of GFortran offers nearly
complete support for the coarray features of Fortran 2008
plus several anticipated new coarray features expected to
appear in the next Fortran standard. However, any pro-
grams that are not embarrassingly parallel require linking
GFortran-compiled object files with a parallel communica-
tion library. In this paper, we present performance results
for OpenCoarrays, the first collection of open-source trans-
port layers that support coarray Fortran compilers by trans-
lating a compiler’s communication and synchronization re-
quests into calls to one of several communication libraries.
We provide a link to the OpenCoarrays source code reposi-
tory on the dedicated domain http://opencoarrays.org.

Section 2 introduces the coarray programming model. Sec-
tion 3 introduces the OpenCoarrays transport layers: one
based on MPI and one on the GASNet communication li-
brary for PGAS languages [1]. Section 4.1 presents the
test suite that forms our basis for comparisons between each
compiler/library combination. Section 5 presents the band-
width, latency, and execution times for various message sizes
and problem sizes produced with each compiler/library com-
bination. Section 6 summarizes our conclusions.

2. INTRODUCTION TO COARRAYS
In this section, we explain basic coarray concepts. A pro-
gram that uses coarrays is treated as if it were replicated at
the start of execution. Each replication is called an image.
Each image executes asynchronously until the programmer
explicitly synchronizes via one of several mechanisms. A
typical synchronization statement is sync all, which func-
tions as a barrier at which all images wait until every image
reaches the barrier. A piece of code contained between syn-
chronization points is called a segment and a compiler is free
to apply all its optimizations inside a segment.

An image has an image index that is a number between one
and the number of images (inclusive). In order to identify
a specific image at runtime or the total number of images,
Fortran provides the this_image() and num_images() func-
tions. A coarray can be a scalar or array, static or dynamic,
and of intrinsic or derived type. A program accesses a coar-
ray object on a remote image using square brackets [].

An object with no square brackets is considered local. A
simple coarray Fortran program follows:

real , dimension (10) , codimension [∗] : : x , y

integer : : num img , me

num img = num images ()
me = th i s image ()

! Some code here
x (2) = x (3) [7] ! g e t va lue from image 7
x (6) [4] = x (1) ! put va lue on image 4
x (:) [2] = y (:) ! put array on image 2

sync a l l

! Remote−to−remote array t r an s f e r
i f (me == 1) then

y (:) [num img] = x (:) [4]
sync images (num img)

e l s e i f (me == num img) then
sync images ([1])

end i f

x (1 : 1 0 : 2) = y (1 : 1 0 : 2) [4] ! s t r i d e d ge t from 4

In this example, x and y are coarray arrays and every image
can access these variables on every other image. All the
usual Fortran array syntax rules are valid and applicable.
Also, a coarray may be of user-defined derived type.

Fortran provides Locks, Critical sections and Atomic Intrin-
sics for coarrays. Currently, the Cray compiler is the only
released compiler supporting these features. Although not
discussed in this paper, the OpenCoarray and GNU Fortran
trunks offer partial support for these features.

3. GNU FORTRAN AND LIBCAF
GNU Fortran (GFortran) is a free, efficient and widely used
compiler. Starting in 2012, GFortran supported the coar-
ray syntax for single-image execution, but it did not pro-
vide multi-image support. GFortran delegates communica-
tion and synchronization to an external library (LIBCAF)
while the compiler remains agnostic with regards to the ac-
tual implementation of the library calls.

For single-image execution, GFortran calls stub implemen-
tations inside a LIBCAF SINGLE library included with the
compiler. For multi-image execution, an external library
must be provided to handle GFortran-generated procedure
invocations. Having an external library allows for exchang-
ing communication libraries without modifying the compiler
code. It also facilitates integration of the library into com-
pilers other than GFortran so long as those compilers are
capable of generating the appropriate library calls. Open-
Coarrays uses a BSD-style, open-source license.

OpenCoarrays currently provides two alternative versions
of the library: LIBCAF MPI and LIBCAF GASNet. The
MPI version has the widest features coverage; it is intended
as the default because of the ease of usage and installation.
The GASNet version targets expert users; it provides better
performance than the MPI version but requires more effort
during the installation, configuration, and usage.

3.1 LIBCAF_MPI
LIBCAF MPI currently supports

• Coarray scalar and array transfers, including efficient

transfers of array sections with non-unit stride.

• Synchronization via sync all, sync images.

• Collective procedures (co_sum, co_max, co_min, etc...)
except for character coarrays.

• Atomics.

The support for coarray transfers includes get/put and strided
get/put for every data type, intrinsic or derived.

LIBCAF MPI uses the one-sided communication functions
provided by MPI-2 and MPI-3 with passive synchronization
(using MPI Win lock/unlock).

This apporach allows us to easily implement the basic coar-
rays operations and to exploit the MPI RMA support when
available.

3.1.1 Get, Put and Strided Transfers
A Get operation consists of a transfer from a remote im-
age to a local image; in coarray syntax it is expressed with
the local data on the left-hand side of the equality and the
remote data on the right-hand side. It maps directly onto
the MPI Get one-sided function introduced in MPI-2. A
Put operation consists in the opposite of a Get operation;
it transfers data from the local image to a remote image.
It is expressed in corray syntax with the local data on the
right hand side of the equality and the remote data on the
left hand side. This operation maps onto the MPI Put one-
sided function introduced in MPI-2. For strided transfer,
we mean a non-contiguous array transfer. This pattern is
pretty common in scientific applications and usually involves
arrays with several dimensions. LIBCAF MPI provides two
approaches for the strided transfer implementation: send-
ing element-by-element and using the Derived Data Types
feature provided by MPI. The first approach is the most
general, easy to implement and inefficient in terms of per-
formance. It is provided as default configuration because of
its generality. The second approach provides higher perfor-
mance but requires more memory in order to transfer the
data.

3.2 LIBCAF_GASNet
GASNet stands for Global Address Space Networking and is
provided by UC Berkeley [1]. LIBCAF GASNet is an exper-
imental version targeting expert users but providing higher
performance than LIBCAF MPI. GASNet provides efficient
remote memory access operations, native network commu-
nication interfaces and useful features like Active Messages
and Strided Transfers (still under development). The major
limitation of GASNet for a coarray implementation consists
in the explicit declaration of the total amount of remote
memory required by the program. Thus, the user has to
know, before launching the program, how much memory is
required for coarrays. Since a coarray can be static or dy-
namic, a good estimation of such amount of memory may not
be easy to guess. A memory underestimation may generate
sudden errors due to memory overflow and overestimations
may require the usage of more compute nodes than needed.

Currently, LIBCAF GASNet supports only coarray scalar
and array transfers (including efficient strided transfers) and

all the synchronization routines. This paper therefore pro-
vides only a partial analysis of this version. We plan to
complete every test case in future work.

LIBCAF GASNet maps the Get and Put operations directly
onto the gasnet put bulk and gasnet get bulk functions. As
LIBCAF MPI, LIBCAF GASNet offers two alternatives for
the strided transfers: the element-by-element approach and
the native support for strided transfers provided by GAS-
Net. The second approach uses the gasnet putv bulk and
gasnet getv bulk functions. They provide good performance
even if they are not yet optimized.

4. COARRAY COMPARISON
This section presents a comparison between the GFortran/Open-
Coarrays runtime performance and that of the Cray and In-
tel commercial compilers. We analyze LIBCAF MPI more
deeply but also provide some LIBCAF GASNet results on
Cray machines.

4.1 Test Suite
In order to compare LIBCAF with the other compilers, we
ran several test cases.

• EPCC CAF Micro-benchmark suite.

• Burgers Solver.

• CAF Himeno.

• Distributed Transpose.

We describe each of these test codes in more detail next.

4.1.1 EPCC CAF Micro-benchmark Suite
David Henty of the University of Edinburgh wrote the EPCC
CAF Micro-benchmark suite [8]. Its source code is freely
available on the web. It measures the performance (latency
and bandwidth) of the basic coarray operations (get, put,
strided get, strided put, sync), a typical communication pat-
tern (the halo exchange), and synchronization. Every basic
operation is analyzed in two different scenarios: single point-
to-point and multiple point-to-point. In the first case, image
1 interacts only with image n; every other image waits for
the end of the test. In this scenario, no network contention
occurs; it thus represents a best case scenario.

During the multiple point-to-point tests, image i interacts
only with image i+n/2; this test case models what actually
happens in real parallel applications. Here we compare only
these two scenarios. We do not report results on the per-
formance of synchronization operations and halo exchanges.
The synchronization time has a smaller impact on the overall
performance than the transfer time, and the halo-exchange
performance is considered in the real application tests like
CAF Himeno.

4.1.2 Burgers Solver
Rouson et al. [14] wrote the coarray Fortran Burgers Solver,
and the source code is freely available online.1 This applica-
tion prototype solves a partial differential equation (PDE)

1See “Resources”’ at http://www.cambridge.org/Rouson

that involves diffusion, nonlinear advection, and time de-
pendence. It uses Runge-Kutta time advancement. It also
uses halo point exchanges to support finite difference ap-
proximations. The spatial domain is one-dimensional, which
keeps the code much simpler than most scientific PDE ap-
plications. Furthermore, in studies with the Cray compiler,
the Burgers solver exhibits 87% parallel efficiency in weak
scaling on 16,384 cores. The solver exhibits linear scaling
(sometimes super-linear) [7] and a separate, upcoming pa-
per provides comparisons to a MPI version of the solver. It
uses coarrays mainly for scalar transfers. The destination
images of transfers are neighboring images that are usually
placed on the same node.

4.1.3 CAF Himeno
Ryutaro Himeno of RIKEN wrote the initial version of CAF
Himeno as a parallel application using OpenMP and MPI
to build a three-dimensional (3D) Poisson relaxation via the
Jacobi method. William Long of Cray, Inc., developed the
first coarray version of CAF Himeno using an early Cray
coarray implementation. Dan Nagle of NCAR refactored the
coarray CAF Himeno to conform to the coarray feature set
in the Fortran 2008 standard. The resulting test expresses
strided array transfers in the usual Fortran colon syntax.

4.1.4 3D Distributed Transpose
Robert Rogallo, formerly of NASA Ames Research Center,
provided the Distributed Transpose test. This application
kernel was extracted from codes for 3D Fourier-spectral, di-
rect numerical simulations of turbulent flow [13]. The kernel
is available in coarray and MPI versions, facilitating compar-
ison between the two.

4.2 Hardware and Software
In order to compare the Cray and Intel coarray implemen-
tations with our new GFortran/OpenCoarray implementa-
tion, we ran each test case on high-performance computing
(HPC) clusters provided by several organizations. Our Intel
CAF tests utilize the Intel Cluster Toolkit as required for
distributed-memory coarray execution. Or Cray compiler
tests use proprietary Cray hardware as required. Our GFor-
tran/OpenCoarray tests based on MPI (LIBCAF MPI) can
be executed on any machine able to compile gcc and any
standard MPI implementation. The hardware available for
our analysis is as follows:

• Eurora: Linux Cluster, 16 cores per node, Infiniband
QDR 4x QLogic (CINECA).

• PLX: IBM Dataplex, 12 cores per node, Infiniband
QDR 4x QLogic (CINECA).

• Yellowstone/Caldera2: IBM Dataplex, 16 cores per
node (2 GB/core), FDR Infiniband Mellanox 13.6 GBps
(NCAR).

• Janus: Dell, 12 cores per node, Infiniband Mellanox
(CU-Boulder).

2For tests requiring more than 2GB/core we used Caldera,
which has 4 GB/core and the same processors as Yellow-
stone.

• Hopper: Cray XE6, 24 cores per node (1.3 GB/core),
3-D Torus Cray Gemini (NERSC).

• Edison: Cray XC30, 24 cores per node, Dragonfly Cray
Aries (NERSC).

In this paper we present only the results collected from Yel-
lowstone and Hopper/Edison. In particular, the comparison
between GFortran and Intel has been run on Yellowstone
and the comparison between GFortran and Cray on Hop-
per/Edison. In order to validate the results, we ran the
tests on the remaining machines listed above.

4.2.1 Hopper and Edison
Hopper allows for running coarray programs only with Cray
and GFortran. For the Cray compiler we used the 8.2.1
version with the -O3 flag, loaded the craype-hugepages2M
module and set the XT SYMMETRIC HEAP SIZE envi-
ronment variable properly (when needed). For GFortran we
used the GCC 5.0 development version (the GCC trunk) and
Mpich/7.0.0 (installed on the machine) for LIBCAF MPI.
The only flag applied on GFortran was -Ofast (for optimiza-
tion). The GCC 5.0 experimental version employed was
almost the same version present as of this writing on the
gcc-trunk (no performance changes).

We used Edison only for the EPCC CAF micro-benchmark.
On Edison, we used the Cray compiler version 8.3.0 with the
same configuration set on Hopper.

4.2.2 On Yellowstone
Yellowstone allows us to run only coarray programs com-
piled with Intel and GFortran. We used the Intel compiler
14.0.2, which employs IntelMPI 4.0.3 for the coarrays sup-
port. We applied the following flags the compilation: -Ofast
-coarray -switch no launch. For GFortran, we used the GCC
5.0 development version (same used for Cray) and MPICH
IBM (optimized for Mellanox IB) for LIBCAF MPI. Even
in this case, the only flag applied on GFortran was -Ofast.

5. RESULTS
In this section we present an exhaustive set of tests per-
formed on single and multiple nodes of Yellowstone/Caldera,
Hopper, and Edison. “Single node”’ means that the network
connecting the cluster nodes is not involved; such a config-
uration can be useful to understand the performance of the
communication libraries in a shared-memory environment.

5.1 EPCC CAF - GFortran vs. Intel
The EPCC CAF micro-benchmark suite provides latency
and bandwidth for several block sizes during the basic CAF
operations (get, put, strided get, strided put). EPCC tests
two scenarios: single point-to-point, where there is no net-
work contention involved, and multiple point-to-point for
a more realistic test case. In this section, we present the
results of GFortran vs. Intel on single and multiple nodes
only for the put and strided put operations (“get”has almost
the same results). This particular comparison, GFortran vs.
Intel, is feasible only on Yellowstone/Caldera.

5.1.1 Single pt2pt Put on a single node
This test employed 16 cores in one point-to-point put oper-
ation on one 16-core node on Yellowstone. Figures 1 and 2
show that, on a single node, Intel is better than GFortran for
quantities less than or equal to 4 doubles (32 bytes total).
After that point the latency assumes an exponential trend
for Intel but stays constant for GFortran. The bandwidth,
after 4 doubles, has exactly an inverse behavior: exponen-
tial for GFortran and constant for Intel. In other words, for
small transfers (specifically scalars) within the same node,
without contention, Intel outperforms GFortran.

0.0e+00

2.0e-05

4.0e-05

6.0e-05

8.0e-05

1.0e-04

1.2e-04

1 2 4 8 16 32 64

T
im

e
 (

s
e
c
)

Block size (doubles)

GFor/MPI
Intel

Figure 1: Latency Put small block size - Yellowstone 16
cores

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Intel

Figure 2: Bandwidth Put small block size - Yellowstone 16
cores

Figures 3 and 4 show that increasing the block size does not
change the trends observed on small block sizes.

5.1.2 Multi-pt2pt Put on a single node
This test employed 16 cores in multiple point-to-point put
operations on one 16-core node on Yellowstone. In this con-
figuration, image i interacts only with image i+n/2 (where
n is the total number of images). For this case, we show
only the bandwidth in Figure 5.

This test case shows that Intel is less affected by network
contention (in this case the shared memory network) than
GFortran. In this particular case, Intel has a bigger band-
width than GFortran for values less than or equal to 8 dou-
bles (64 bytes).

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

T
im

e
 (

s
e
c
)

Block size (doubles)

GFor/MPI
Intel

Figure 3: Latency: Put big block size - Yellowstone 16 cores

 1

 10

 100

 1000

 10000

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Intel

Figure 4: Bandwidth: Put big block size - Yellowstone 16
cores

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Intel

Figure 5: Bandwidth: multi-pt2pt Put - Yellowstone 16
cores

A good way to see this phenomenon is to chart the band-
width difference between single and multiple. Figure 6
shows such a comparison, and we can see that Intel has
a constant behavior. Intel is insensitive to network con-
tention, which means the network is not the bottleneck for
Intel. GFortran exhibits a quite different behavior, implying
that GFortran is network-limited.

5.1.3 Single pt2pt Strided Put on a single node

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

Diff_GFor/MPI
Diff_Intel

Figure 6: Bandwidth difference between single and multi -
Yellowstone 16 cores

 1

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128

M
B

/s
e
c

Stride size

GFor/MPI
Intel

GFor/MPI_NS

Figure 7: Strided Put on single node - Yellowstone 16 cores

By “strided transfer,” we refer to a non-contiguous array
transfer. This kind of transfer is common in several scien-
tific applications, and its performance is therefore crucial
for the performance of the entire application. That test is
also very useful to understand the behavior of Intel. LIB-
CAF MPI supports efficient strided transfer; such support
can be disabled by sending the array elements one at time.
Figure 7 shows the performance during the strided trans-
fer of LIBCAF MPI and Intel; GFor/MPI NS represents the
performance of LIBCAF MPI without strided transfer sup-
port (sending element-by-element). The most interesting
fact is that, even with a contiguous array (stride = 1), In-
tel has the same performance of LIBCAF MPI without the
strided transfer support, indicating that Intel sends arrays
element-by-element even with contiguous arrays.

LIBCAF MPI uses the classic MPI Data Type in order to
implement an efficient strided transfer. This approach is
very easy to implement but it is not very efficient either in
terms of memory or time.

5.1.4 Single pt2pt Put on multiple nodes
In this configuration, we ran the benchmark on 32 cores,
thus involving the real, inter-node network in the transfer.
Something unexpected happens: in Figure 8, Intel shows
about 428 seconds of latency for transferring 512 doubles (4
KBytes) through the network. This strange behavior relates

to element-wise transfer.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512

T
im

e
 (

s
e
c
)

Block size (doubles)

GFor/MPI
Intel

Figure 8: Latency on 2 compute nodes - Yellowstone 32 cores

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256 512

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Intel

Figure 9: Bandwidth single Put on 2 compute nodes - Yel-
lowstone 32 cores

5.2 EPCC CAF – GFortran vs. Cray
In this section, we compare the results of GFortran and Cray.
This particular comparison is feasible only on Hopper and
Edison. For this case, we report only the bandwidth results,
and we report the GASNet results for EPCC and the Dis-
tributed Transpose tests. Furthermore, we report only the
results for the Get and Strided Get operations.3

5.2.1 Single pt2pt Get on a single node
This test involves one point-to-point Get on 24 cores. Be-
cause Hopper and Edison have 24 cores on each compute
node, the test runs on one node. Figure 10 shows that,
for small transfers, LIBCAF GASNet outperforms Cray on
Hopper. For big transfers, Figure 11 shows that Cray is
usually (but not always) better than the two LIBCAF im-
plementations. Figures 12 shows that, on Edison, LIB-
CAF GASNet outperforms Cray for small transfers (like on
Hopper) but with a bigger gap. Figure 13 shows that, for big
sizes, LIBCAF MPI outperforms Cray and LIBCAF GASNet.

On single node, on Edison, Cray is always outperformed by
one of the LIBCAF implementations.

3The performance of Get is similar to Put, but we do not
show the latter results because of RMA problems when data
packages exceed a protocol-type-switching threshold.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16 32 64

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 10: Bandwidth for small block sizes - Hopper 24 cores

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 11: Bandwidth for big block sizes - Hopper 24 cores

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 12: Bandwidth for small block sizes - Edison 24 cores

5.2.2 Multi pt2pt Get on a single node
Multiple point-to-point Get on 24 cores. We analyze the be-
havior of LIBCAF MPI, LIBCAF GASNet and Cray with
contention on the underlying network layer. Figure 14 shows
LIBCAF GASNet outperforming Cray in almost every case
for which there exists contention on Hopper’s underlying
network layer. Figure 15 shows LIBCAF GASNet exhibit-
ing better performance than Cray for small block sizes on
Edison.

5.2.3 Single pt2pt Strided Get on a single node

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 13: Bandwidth for big block sizes - Edison 24 cores

 0.1

 1

 10

 100

 1000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 14: Bandwidth for multi pt2pt Get - Hopper 24 cores

 0.1

 1

 10

 100

 1000

 10000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 15: Bandwidth for multi pt2pt Get - Edison 24 cores

Figure 16 shows the performance of one point-to-point strided
Get on one Hopper compute node. In this case, Cray always
has the best performance. GASNet provides experimental
strided-transfer support that is not yet optimized. The sin-
gle stride has dimension 32768 doubles. Figure 17 shows
that LIBCAF MPI is very effective on Edison. In fact, for
several stride sizes, LIBCAF MPI is better than Cray.

5.2.4 Single pt2pt Get on multiple nodes
Figures 18 and 19 show that on Hopper, on multiple nodes,
Cray performs better than LIBCAF in almost every situa-

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128

M
B

/s
e
c

Stride size

GFor/MPI
Cray

GFor/GN

Figure 16: Strided Get on single node - Hopper 24 cores

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128

M
B

/s
e
c

Stride size

GFor/MPI
Cray

GFor/GN

Figure 17: Strided Get on single node - Edison 24 cores

tion. GASNet shows good behavior for small block sizes.
Figures 20 and 21 show that, on Edison, LIBCAF GASNet
almost always outperforms Cray.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64

M
B

/s
e
c

Block size (double)

GFor/MPI
Cray

GFor/GN

Figure 18: Bandwidth for small block sizes - Hopper 48 cores

5.2.5 Multi pt2pt Get on multiple nodes
Figures 22 and 23 show the performance of Cray and LIB-
CAF when network contention is involved on multiple nodes.
On Hopper, LIBCAF GASNet has the best performance for
small transfers (less than 512 doubles); on Edison, LIB-
CAF GASNet shows good performance for transfers smaller
than 16 doubles.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 19: Bandwidth for big block sizes - Hopper 48 cores

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64

M
B

/s
e
c

Block size (double)

GFor/MPI
Cray

GFor/GN

Figure 20: Bandwidth for small block sizes - Edison 48 cores

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 21: Bandwidth for big block sizes - Edison 48 cores

5.2.6 Single pt2pt Strided Get on multiple nodes
The strided transfers on multiple node, for both Hopper and
Edison, have a unexpected trend. Figures 24 and 25 show
that LIBCAF MPI has better performance than Cray on
both machines.

5.3 Burgers Solver – GFortran vs. Intel
The Burgers Solver brings us closest to a complete scientific
application. It uses coarrays mainly for scalar transfers be-
tween neighbor images. In other words, the scalar transfers
usually occur within the same node. Figure 26 shows that,

 0.1

 1

 10

 100

 1000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 22: Bandwidth for multi pt2pt Get - Hopper 48 cores

 0.1

 1

 10

 100

 1000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

M
B

/s
e
c

Block size (doubles)

GFor/MPI
Cray

GFor/GN

Figure 23: Bandwidth for multi pt2pt Get - Edison 48 cores

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128

M
B

/s
e
c

Stride size

GFor/MPI
Cray

GFor/GN

Figure 24: Strided Get on multiple nodes - Hopper 48 cores

on 16 cores (one compute node) Intel outperforms GFortran
(as stated in 5.1.1 and 5.1.2). On multiple compute nodes,
GFortran slightly outperforms Intel. The small difference
stems from the communication being between neighboring
images that are usually on the same node.

5.4 Burgers Solver – GFortran vs. Cray
Figure 27 shows Burgers Solver performance on Hopper.
Cray outperforms GFortran – probably owing to leveraging
Cray’s proprietary communication library running on Cray’s
proprietary interconnect.

 10

 100

 1000

 10000

1 2 4 8 16 32 64 128

M
B

/s
e
c

Stride size

GFor/MPI
Cray

GFor/GN

Figure 25: Strided Get on multiple nodes - Edison 48 cores

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

02:30

02:45

03:00

16 32 64 128 256

T
im

e
 (

m
in

:s
e
c
)

Cores

GFor/MPI
Intel

Figure 26: BurgersSolver GFortran vs. Intel

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

24 48 192 384

T
im

e
 (

m
in

:s
e
c
)

Cores

GFor/MPI
Cray

Figure 27: BurgersSolver GFortran vs. Cray

5.5 CAF Himeno - GFortran vs. Intel
CAF Himeno uses the Jacobi method for a 3D Poisson relax-
ation. The 3D nature of the problem implies strided trans-
fers among several images. Using 64 cores (4 Yellowstone
nodes), Intel requires more than 30 minutes to complete.
We therefore report in Figure 28 only the results for 16 and
32 cores.

In this case, we report the MFLOPS on the y axis, thus
higher means better.

 0

 5000

 10000

 15000

 20000

 25000

 30000

16 32

M
F

L
O

P
S

Cores

GFor/MPI

Intel

Figure 28: CAF Himeno - GFortran vs. Intel

 0

 5000

 10000

 15000

 20000

 25000

 30000

16 32

M
F

L
O

P
S

Cores

GFor/MPI
Cray

Figure 29: CAF Himeno - GFortran vs. Cray

5.6 CAF Himeno: GFortran vs. Cray
The execution of CAF Himeno on Hopper required quite a
bit of tuning. In order to run the 32-core test, we were forced
to place 8 images on each node. Because each node has 24
cores, we wasted 16 cores on each node for memory reasons.
Gfortran proved the easiest coarray implementation for CAF
Himeno. Figure 29 shows the CAF Himeno results for Cray,
which outperforms GFortran on single and multiple nodes.

5.7 Distributed Transpose: GFortran vs. In-
tel

This test case performs transpose operations that involve
sending a contiguous, four-dimensional array. Figure 30
shows again that Intel outperforms GFortran on a single
node.

On multiple nodes, however, the time required by Intel ex-
plodes because the communication is spread over several
processes among the nodes (and not only between images on
the same node). Inspection of the assembly language code
generated Intel shows element-by-element transfers with lock-
/unlock pairs bracketing each transfer.

5.8 Distributed Transpose – GFortran vs. Cray
For this case only, we provide a comparison between coarrays
and MPI. We used only 16 of the 24 cores provided by Hop-
per because the matrix size must be a multiple of the number
of processes involved. We fixed the size at 1024x1024x512

 0

 10

 20

 30

 40

 50

 60

 70

16 32 64

T
im

e
 (

s
e
c
)

Cores

GFor/MPI
Intel

Figure 30: Distributed Transpose - GFortran vs. Intel

 0

 1

 2

 3

 4

 5

 6

 7

16 32 64

T
im

e
 (

s
e
c
)

Cores

GFor/MPI
Cray

GFor/GASNet
MPI

Figure 31: Distributed Transpose - Coarrays vs. MPI

elements. Figure 31 shows that, within the same node (16
cores), GFortran with LIBCAF GASNet has the best per-
formance, even better than Cray. On multiple nodes, Cray
shows the best performance. Notably, GFortran with LIB-
CAF GASNet outperforms a pure MPI implementation in
every configuration.

6. CONCLUSIONS AND FUTURE WORK
In this section we summarize the conclusions of our investi-
gation and our plans for further development.

6.1 GFortran vs. Intel
Our tests showed Intel outperforming GFortran only dur-
ing small transfers within the same node. The bad perfor-
mance showed by Intel is mainly related with an element-
by-element transfer, even with contiguous memory segments
(see Figure 7).

Since Intel sends one element at time, its superior perfor-
mance for scalar transfers most likely relates to good perfor-
mance provided by IntelMPI. On multiple nodes, the penalty
of sending element-by-element becomes huge for Intel.

GFortran shows better performance than Intel on array trans-
fers within the same node and in every configuration involv-
ing the network.

6.2 GFortran vs. Cray

On Hopper, GFortran outperformed Cray for small trans-
fers on a single node, while Cray outperformed GFortran
in most cases for big transfers. On Edison, GFortran out-
performs Cray in both single- and multiple-node configura-
tions. An unexpected result for us is the poor performance
of Cray during strided transfers on multiple nodes. Also,
although Cray proposes a complete and efficient coarray im-
plementation, it still requires some tuning in order to run
the programs.

Since Cray does not provide the source code of its coar-
ray implementation, we are not able to explain why the
strided transfer between multiple nodes has very poor per-
formance. LIBCAF MPI uses the MPI Derived Data Types
(MPI Vector for 1-D arrays and MPI Type Indexed for any
other case) in order to implement the efficient strided trans-
fer support. This approach produces good performance but
requires a lot of memory.

6.3 Final Considerations
Although LIBCAF GASNet often performs better than LIB-
CAF MPI, the latter provides a more easy-to-use support
for coarrays. The biggest limitation of LIBCAF GASNet
consists in the necessity to declare the total amount of mem-
ory to use for coarrays. Sometimes this quantity could not
be known a-priori and several attempts are needed in order
to find a good estimation.

Our intent, in this work, is to provide free, stable, easy-to-
use and efficient support for coarrays. LIBCAF MPI enables
GFortran to provide coarray support that works on any ar-
chitecture able to compile GCC and MPI (a very common
configuration). We expect GFortran/LIBCAF MPI to work
on Linux, OS X, and Windows without any limitations at no
cost and with strong performance. LIBCAF GASNet, even
if slightly more hard to use, provides great portability (some
configurations require just a C89 compiler and MPI-1) and
great performance.

GFortran’s multi-image coarray support is already on GCC
5.0 trunk freely available for download and installation. The
http://opencoarrays.org web site includes a link to a git
repository that offers public, read-only access to the full
OpenCoarrays library (which includes LIBCAF MPI and
LIBCAF GASNet).

6.4 Future Work
We plan to improve our strided transfer support and to cover
all the missing features from the standard. Because LIB-
CAF GASNet has shown remarkable performance in every
configuration tested, we also plan to improve that version
in order to cover missing features and to improve the us-
age and installation process. Finally, we plan to make a
complete performance comparison of MPI and GASNet with
other communication libraries like ARMCI [9] and OpenSH-
MEM [3].

Acknowledgments
We gratefully acknowledge the support we received from the
following institutions: National Center for Atmospheric Re-
search for the access on Yellowstone/Caldera and the logistic
support provided during the development of this work.

CINECA for the access on Eurora/PLX for the project HyPS-
BLAS under the ISCRA grant program for 2014.
Google, because part of this work is a Google Summer of
Code 2014 project.
National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, for the
access on Hopper/Edison under the grant OpenCoarrays.

7. REFERENCES
[1] D. Bonachea. GASNet Specification, v. 1.1. Technical

Report UCB/CSD-02-1207, U.C. Berkeley, 2002.

[2] R. Chandra. Parallel programming in OpenMP.
Morgan Kaufmann, 2001.

[3] B. Chapman, T. Curtis, S. Pophale, S. Poole,
J. Kuehn, C. Koelbel, and L. Smith. Introducing
OpenSHMEM: SHMEM for the PGAS community. In
Proc. of 4th Conf. on Partitioned Global Address
Space Programming Model, PGAS ’10. ACM, 2010.

[4] I. D. Chivers and J. Sleightholme. Compiler support
for the Fortran 2003 and 2008 standards. ACM
SIGPLAN Fortran Forum, 33(2), Aug. 2014.

[5] D. Eachempati, H. J. Jun, and B. Chapman. An
open-source compiler and runtime implementation for
Coarray Fortran. In Proc. of 4th Conf. on Partitioned
Global Address Space Programming Model, PGAS ’10.
ACM, 2010.

[6] G. Jin, J. Mellor-Crummey, L. Adhianto, W. N.
Scherer III, and C. Yang. Implementation and
performance evaluation of the HPC challenge
benchmarks in Coarray Fortran 2.0. In Proc. of IEEE
Int’l Parallel and Distributed Processing Symposium,
IPDPS ’11, pages 1089–1100, 2011.

[7] M. Haveraaen, K. Morris, D. W. I. Rouson,
H. Radhakrishnan, and C. Carson. High-performance
design patterns for modern Fortran. Scientific
Programming, in press.

[8] D. Henty. A parallel benchmark suite for Fortran
Coarrays. In Applications, Tools and Techniques on
the Road to Exascale Computing, pages 281–288. IOS
Press, 2012.

[9] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. In Parallel
and Distributed Processing, volume 1586 of LNCS,
pages 533–546. Springer Berlin Heidelberg, 1999.

[10] R. W. Numrich and J. Reid. Co-array Fortran for
parallel programming. SIGPLAN Fortran Forum,
17(2):1–31, Aug. 1998.

[11] R. W. Numrich and J. Reid. Co-arrays in the next
Fortran standard. SIGPLAN Fortran Forum,
24(2):4–17, Aug. 2005.

[12] P. S. Pacheco. Parallel programming with MPI.
Morgan Kaufmann, 1997.

[13] R. S. Rogallo. Numerical experiments in homogeneous
turbulence. Technical Report 81315, National
Aeronautics and Space Administration, 1981.

[14] D. Rouson, J. Xia, and X. Xu. Scientific Software
Design: The Object-Oriented Way. Cambridge
University Press, New York, NY, 2011.

[15] A. Vaught. The G95 project. http://g95.org, Dec.
2008.

